基于氨基酸MOF的共混超滤膜制备及性能研究 |
作者:张晓灿,马慧晓,朱梓源 |
单位: 中国石油大学(北京) 理学院,油气光学探测技术北京市重点实验室,北京 102249 |
关键词: 金属有机框架;膜污染;PSf超滤膜;抗污性能 |
DOI号: |
分类号: TQ028.3+8 |
出版年,卷(期):页码: 2023,43(4):75-83 |
摘要: |
亲水化改性是解决聚砜(PSf)膜污染问题的重要策略之一,而将PSf与亲水性材料直接共混是较为高效的途径。MIP-202是亲水性多孔材料,可用于改善超滤膜的防污性能。本研究以N,N-二甲基乙酰胺(DMAc)为溶剂,PVP为致孔剂,采用非溶剂致相分离法(NIPS)制备了PSf/MIP-202共混超滤膜,研究了MIP-202的含量对PSf超滤膜结构与性能的影响。通过XRD、SEM、FTIR、接触角、水通量、孔隙率和平均孔径等测试手段对共混改性膜进行表征测试。结果表明,在MIP-202添加剂含量为4 %时,膜的综合性能最优,共混超滤膜的水接触角从81 °降低至70 °,纯水通量达到550 L/(m2·h),是PSf原膜纯水通量[300 L/(m2·h)]的1.8 倍。该膜对牛血清白蛋白保持了95 %以上的高截留率,通量恢复率从42 %增加到75 %,抗污染性能较PSf原膜明显提高。 |
Hydrophilic modification is one of the most important strategies to enhance antifouling properties of polysulfone (PSf) membranes. Blending of PSf with hydrophilic material MIP-202 is an efficient way. The polysulfone (PSf)/MIP-202 mixed matrix membrane was prepared via non solvent induced phase separation (NIPS) using N,N-dimethylacetamide (DMAc) as the solvent and PVP as the pore forming agent. The effect of MIP-202 content on the structure and performance of PSf ultrafiltration membrane was studied. The composite membranes were characterized by XRD, SEM and FTIR, and water contact angle, water flux, porosity and average pore size were also analyzed. The composite membrane exhibited optimum properties with 4% MIP-202, and the water contact angle decreased from 81° to 70 °. The maximum pure water flux was 550 L/(m2·h) with BSA rejection up to 95%, and it was 1.8 times of the DI water flux of the pristine membrane [300 L/(m2·h)]. The flux recovery ratio increased from 42 % to 75 %, and the antifouling performance was significantly improved compared with that of pristine PSf membrane. |
基金项目: |
国家自然科学基金(22105225),中国石油大学(北京)校级自主科研基金(2462022YXZZ00 7) |
作者简介: |
张晓灿(1982-),女,籍贯河南新乡,副教授,博士,主要从事高分子复合膜材料的研究,E-mail:xiaocan.zhang@cup.edu.cn |
参考文献: |
[1] 高文静, 杨晓庆, 王展, 等. 聚砜超滤膜的亲水改性研究[J]. 化工新型材料, 2022, 50(04): 90-94. [2] 周庆莹, 刘四华, 厍景国, 等. 曝气辅助聚多巴胺共沉积膜的制备与表征[J]. 膜科学与技术, 2022, 42(05): 17-23. [3] Yadav S, Ibrar I, Altaee A, et al. Preparation of novel high permeability and antifouling polysulfone-vanillin membrane[J]. Desalination, 2020, 496: 114759. [4] Hussain S, Wan X, Li Z, et al. Cu-TCPP nanosheets blended polysulfone ultrafiltration membranes with enhanced antifouling and photo-tunable porosity[J]. Sep Purif Technol, 2021, 268: 118688. [5] Meng M, Li B, Zhu Y, et al. A novel mixed matrix polysulfone membrane for enhanced ultrafiltration and photocatalytic self-cleaning performance[J]. J Colloid Interface Sci, 2021, 599: 178-189. [6] Ruigómez I, González E, Rodríguez-Gómez L, et al. Fouling control strategies for direct membrane ultrafiltration: physical cleanings assisted by membrane rotational movement[J]. Chem Eng J, 2022, 436: 135161. [7] Chen W, Wei M, Wang Y. Advanced ultrafiltration membranes by leveraging microphase separation in macrophase separation of amphiphilic polysulfone block copolymers[J]. J Membr Sci, 2017, 525: 342-348. [8] Ding J, Wang J, Luo X, et al. A passive-active combined strategy for ultrafiltration membrane fouling control in continuous oily wastewater purification[J]. Water Res, 2022, 226: 119219. [9] 覃琦清, 王芮, 尤宏, 等. 季铵盐两性离子陶瓷膜制备及抗污染性能研究[J]. 膜科学与技术, 2022, 42(05): 102-112. [10] Song D, Xu J, Fu Y, et al. Polysulfone/sulfonated polysulfone alloy membranes with an improved performance in processing mariculture wastewater[J]. Chem Eng J, 2016, 304: 882-889. [11] Jiang H, Wang T, Li S, et al. Fabrication of porous polymer membrane from polysulfone grafted with acid ionic liquid and the catalytic property for inulin hydrolysis[J]. J Membr Sci, 2021, 618: 118742. [12] Li D, Gao C, Wang X, et al. Zwitterionic polysulfone copolymer/polysulfone blended ultrafiltration membranes with excellent thermostability and antifouling properties[J]. Membranes, 2021, 11(12): 932. [13] Zhong D, Wang Z, Zhou J, et al. Additive-free preparation of hemodialysis membranes from block copolymers of polysulfone and polyethylene glycol[J]. J Membr Sci, 2021, 618: 118690. [14] Saflashkar M A, Homayoonfal M, Davar F. Achieving high separation of cephalexin in a photocatalytic membrane reactor: what is the best method for embedding catalyst within the polysulfone membrane structure?[J]. Chem Eng J, 2022, 450: 138150. [15] Dong X, Shao H, Liu N, et al. Enhancing polysulfone nanocomposite membrane heavy-metal-removal performance using an amine-functionalized separation layer with 3d nanonetworks[J]. Chem Eng J, 2022, 446: 137362. [16] Zhao Z, Liu B, Ilyas A, et al. Harvesting microalgae using vibrating, negatively charged, patterned polysulfone membranes[J]. J Membr Sci, 2021, 618: 118617. [17] Zhao Z, Muylaert K, Szymczyk A, et al. Harvesting microalgal biomass using negatively charged polysulfone patterned membranes: influence of pattern shapes and mechanism of fouling mitigation[J]. Water Res, 2021, 188: 116530. [18] Zhao Z, Ilyas A, Muylaert K, et al. Optimization of patterned polysulfone membranes for microalgae harvesting[J]. Bioresour Technol, 2020, 309: 123367. [19] Refaat Alawady A, Ali Alshahrani A, Ali Aouak T, et al. Polysulfone membranes with CNTs/chitosan biopolymer nanocomposite as selective layer for remarkable heavy metal ions rejection capacity[J]. Chem Eng J, 2020, 388: 124267. [20] Zhu M, Li D, Sun X, et al. Antifouling polysulfone membranes with an amphiphilic triblock additive[J]. Mater Chem Phys, 2022, 285: 126108. [21] Zeng Q, Wan Z, Jiang Y, et al. Enhanced polysulfone ultrafiltration membrane performance through fullerol addition: a study towards optimization[J]. Chem Eng J, 2022, 431: 134071. [22] Alkhouzaam A, Qiblawey H. Novel polysulfone ultrafiltration membranes incorporating polydopamine functionalized graphene oxide with enhanced flux and fouling resistance[J]. J Membr Sci, 2021, 620: 118900. [23] Kusworo T D, Kumoro A C, Aryanti N, et al. Photocatalytic polysulfone membrane incorporated by ZnO-MnO2@SiO2 composite under UV light irradiation for the reliable treatment of natural rubber-laden wastewater[J]. Chem Eng J, 2023, 451: 138593. [24] Dalanta F, Kusworo T D, Aryanti N. Synthesis, characterization, and performance evaluation of UV light-driven Co-TiO2@SiO2 based photocatalytic nanohybrid polysulfone membrane for effective treatment of petroleum refinery wastewater[J]. Applied Catalysis B: Environmental, 2022, 316: 121576. [25] Hu M, Masoomi M Y, Morsali A. Template strategies with MOFs[J]. Coord Chem Rev, 2019, 387: 415-435. [26] Elrasheedy A, Nady N, Bassyouni M, et al. Metal organic framework based polymer mixed matrix membranes: review on applications in water purification[J]. Membranes, 2019, 9(7): 88. [27] Zhao Y, Wu M, Guo Y, et al. Metal-organic framework based membranes for selective separation of target ions[J]. J Membr Sci, 2021, 634: 119407. [28] Deng Y, Wu Y, Chen G, et al. Metal-organic framework membranes: recent development in the synthesis strategies and their application in oil-water separation[J]. Chem Eng J, 2021, 405: 127004. [29] Wan P, Yuan M, Yu X, et al. Arsenate removal by reactive mixed matrix PVDF hollow fiber membranes with UiO-66 metal organic frameworks[J]. Chem Eng J, 2020, 382: 122921. [30] Gupta N, Murthy Z V P. Synthesis and application of ZIF-67 on the performance of polysulfone blend membranes[J]. Mater Today Chem, 2022, 23: 100685. [31] Pishnamazi M, Koushkbaghi S, Hosseini S S, et al. Metal organic framework nanoparticles loaded- PVDF/chitosan nanofibrous ultrafiltration membranes for the removal of BSA protein and Cr(Ⅵ) ions[J]. J Mol Liq, 2020, 317: 113934. [32] Dehghankar M, Mohammadi T, Moghadam M T, et al. Metal-organic framework/zeolite nanocrystal/polyvinylidene fluoride composite ultrafiltration membranes with flux/antifouling advantages[J]. Mater Chem Phys, 2021, 260: 124128. [33] Forouzesh Rad B, Mahdavi H, Forouzesh Rad M, et al. Using design-expert to optimize the properties of a polyethersulfone ultrafiltration membrane through the incorporation of NH2-MIL-53(Fe) and pvp for maximum Cr(Ⅵ) removal and flux[J]. J Polym Environ, 2022, 30(9): 3875-3889. [34] Ren Y, Li T, Zhang W, et al. MIL-PVDF blend ultrafiltration membranes with ultrahigh MOF loading for simultaneous adsorption and catalytic oxidation of methylene blue[J]. J Hazard Mater, 2019, 365: 312-321. [35] Gil E, Huang X, Zuo K, et al. A polysulfone/cobalt metal–organic framework nanocomposite membrane with enhanced water permeability and fouling resistance[J]. ACS Appl Polym Mater, 2022, 4(5): 3532-3542. [36] Feng H, Liu J, Mu Y, et al. Hybrid ultrafiltration membranes based on PES and MOFs @ carbon quantum dots for improving anti-fouling performance[J]. Sep Purif Technol, 2021, 266: 118586. [37] Sun H, Tang B, Wu P. Hydrophilic hollow zeolitic imidazolate framework-8 modified ultrafiltration membranes with significantly enhanced water separation properties[J]. J Membr Sci, 2018, 551: 283-293. [38] Gholami F, Zinadini S, Zinatizadeh A A. Preparation of high performance CuBTC/PES ultrafiltration membrane for oily wastewater separation; A good strategy for advanced separation[J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104482. [39] Zare A, Bordbar A, Razmjou A, et al. The immobilization of candida rugosa lipase on the modified polyethersulfone with mof nanoparticles as an excellent performance bioreactor membrane[J]. J Biotechnol, 2019, 289: 55-63. [40] Mansor E S, Ali E A, Shaban A M. Tight ultrafiltration polyethersulfone membrane for cheese whey wastewater treatment[J]. Chem Eng J, 2021, 407: 127175. [41] Cheng L, Zhou Z, Li L, et al. PVDF/MOFs mixed matrix ultrafiltration membrane for efficient water treatment[J]. Front Chem, 2022, 10: 985750. [42] Wang S, Wahiduzzaman M, Davis L, et al. A robust zirconium amino acid metal-organic framework for proton conduction[J]. Nat Commun, 2018, 9(1): 4937. [43] Diab K E, Salama E, Hassan H S, et al. Biocompatible MIP-202 Zr-MOF tunable sorbent for cost-effective decontamination of anionic and cationic pollutants from waste solutions[J]. Sci Rep, 2021, 11(1): 6619. [44] Kim J, Lee K. Effect of peg additive on membrane formation by phase inversion[J]. J Membr Sci, 1998, 138(2): 153-163. [45] Santosh V, Palodkar K K, Veerababu P, et al. Polysulfone with glycopolymer for development of antifouling ultrafiltration membranes[J]. J Polym Res, 2021, 28(7): 240. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号