含氟聚合物/聚醚砜复合膜的制备及乙酸渗透汽化脱水性能 |
作者:王艳,孙俊涛,李毅,张豪益,肖强 |
单位: 浙江师范大学,含氟新材料研究所,先进催化材料教育部重点实验室,金华 321004 |
关键词: 复合材料;含氟聚合物膜;渗透汽化;乙酸脱水;表面疏水 |
DOI号: |
分类号: TB324 |
出版年,卷(期):页码: 2023,43(4):118-128 |
摘要: |
制备高性能耐酸性渗透汽化脱水膜是膜分离领域的一个挑战。本文通过自由基聚合制备了含氟丙烯酸酯共聚物(PFHI),通过溶液浇铸的方式将其涂覆在聚醚砜(PES)基膜上首次得到含氟聚合物复合膜(PFHI/PES)。以傅里叶变换衰减全反射红外光谱仪(ATR-FTIR)、扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)和热重分析仪(TG)等表征技术探讨了复合膜的官能团、微观形貌、表面元素组成及热稳定性等性质,研究结果表明PFHI的丙烯酸酯主链间通过氨基甲酸酯形成交联网状结构,在PES基膜上可形成厚度均匀的膜层,通过调节PFHI的用量可容易地控制膜厚度。PFHI中的含氟侧链向膜表面迁移形成富氟层,增加了膜的表面疏水性并提高了膜的稳定性。将制备的PFHI/PES用于乙酸渗透汽化脱水,考察了膜厚度、操作温度和进料液浓度等对分离性能的影响,发现该膜具备较好的优先透水性,在20 ℃,98 wt.%乙酸水溶液中的分离因子可达194.19,渗透总通量为58.95 g/(m2·h)。此外,由于PFHI中含氟侧链以及氨基甲酸酯交联结构的存在,该膜在乙酸浓度为98 wt.%的溶液至少可以稳定运行96 h,在乙酸脱水领域具有广阔的应用前景。 |
Preparation of high-performance acid-resistant membranes for water removal by pervaporation remains a great challenge in the field of membrane separation. In this paper, fluorinated acrylate copolymers (PFHI) prepared by a free radical polymerization have been coated on a polyethersulfone (PES) base membrane to obtain fluoropolymer composite membranes (PFHI/PES) by a solution molding method, for the first time. The properties of the composite membranes, such as functional groups, morphology, surface element composition and thermal stability etc., have been investigated by various techniques such as attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analyzer (TG) etc. The results indicate that the acrylate main chains of PFHI are cross-linked by carbamate bonds forming a network structure. Uniform PFHI layers have been fabricated on porous PES filters by a simple solution molding method. The thickness of the PFHI layer is easily controlled by adjusting the amount of the PFHI casting solution. Additionally, the fluorine-containing side chains in PFHI is inclined to migrate to the membrane surface forming a fluorine-rich layer, which increases the hydrophobicity and stability of the membrane. The water removal from acetic acid/water by pervaporation has been performed on the prepared PFHI/PES membranes. The influences of membrane thickness, operating temperature, feed concentration etc. on the separation performance have been investigated, indicating a preferential permeation of water. Separation results indicate that the separation factor of acetic acid and water mixture (98 wt.% acetic acid) is 194.19 at a total permeation flux of 58.95 g/(m2·h) at 20 ℃. The PFHI/PES membrane remains good separation performance in 95 wt.% acetic acid solution after 96 h, ascribing for the cross-linked structure of PFHI and the fluorine-containing side chains. It has a broad application prospect in the field of acetic acid dehydration. |
基金项目: |
基金项目:国家自然科学基金项目(22075253) |
作者简介: |
王艳(1996-),女,宁夏固原市人,硕士生,研究方向为聚合物膜制备及应用,E-mail:1517106124@qq.com |
参考文献: |
[1]Kuila S B, Ray S K. Sorption and permeation of acetic acid-water mixtures by pervaporation using copolymer membrane[J]. Polym Eng Sci, 2013, 53(5): 1073-1084. [2]Yoneda N, Kusano S, Yasui M, et al. Recent advances in processes and catalysts for the production of acetic acid[J]. Appl Catal A, 2001, 221(1/2): 253-265. [3]Nardi C I, Gabriel J P, Vaz M P, et al. Eco-efficiency analysis and intensification of the acetic acid purification process[J]. Chem Eng Process, 2020, 147: 107784. [4]Wang Y C, Li C L, Chang P F, et al. Separation of water–acetic acid mixture by pervaporation through plasma-treated asymmetric poly(4-methyl-1-pentene) membrane and dip-coated with polyacrylic acid[J]. J Membr Sci, 2002, 208(1), 3-12. [5]Raza W, Wang J, Yang J, et al. Progress in pervaporation membranes for dehydration of acetic acid[J]. Sep Purif Technol, 2021, 262: 118338. [6]王晓燕, 阎雪茹, 刘新磊, 等. 乙酸脱水膜研究进展[J]. 膜科学与技术, 2021, 41(6): 202. [7]Algieri C, Drioli E. Zeolite membranes: synthesis and applications[J]. Sep Purif Technol, 2021,5: 119295. [8]Zhu M H, Kumakiri I, Tanaka K, et al. Dehydration of acetic acid and esterification product by acid-stable ZSM-5 membrane[J]. Micropor. Mesopor. Mater, 2013, 181(15): 47-53. [9]Zhu M H, Xia S L, Hua X M, et al. Rapid preparation of acid-stable and high dehydration performance mordenite membranes[J]. Ind Eng Chem Res, 2014, 53(49): 19168-19174. [10]Cui Y, Kita H, Okamoto K I. Zeolite T membrane: preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability[J]. J Membr Sci, 2004, 236(1-2): 17-27. [11]Chaudhari S, Kwon Y, Moon M, et al. Water-selective membrane from crosslinking of poly(vinyl alcohol) with tartaric acid and its pervaporation separation characteristics for a water/acetic acid mixture[J]. Bull Korean Chem Soc, 2015, 36(10): 2534-2541. [12]Moulik S, Nazia S, Vani B, et al. Pervaporation separation of acetic acid/water mixtures through sodium alginate/polyaniline polyion complex membrane[J]. Sep Purif Technol, 2016, 170: 30-39. [13]Veen H, Delft Y, Engelen C, et al. Dewatering of organics by pervaporation with silica membranes[J]. Sep Purif Technol, 2001, 22(1-3): 361-366. [14]Huang Y, Baker R W, Wijmans J G, et al. Perfluoro–coated hydrophilic membranes with improved selectivity[J]. Ind Eng Chem Res, 2012, 52(3): 1141-1149. [15]Smuleac V, Wu J, Nemser S, et al. Novel perfluorinated polymer-based pervaporation membranes for separation of solvent/water mixtures[J]. J Membr Sci, 2010, 352(1-2): 41-49. [16]Jalal T A , Srivatsa Bettahalli N M, Le N L, et al. Hydrophobic hyflon AD/poly(vinylidene fluoride) membranes for butanol dehydration via pervaporation[J]. Ind Eng Chem Res, 2015, 54(44): 11180-11187. [17]Li B, Cui Y, Chung T S. Hydrophobic perfluoropolyether-coated thin-film composite membranes for organic solvent nanofiltration[J]. ACS Appl Polym Mater, 2019, 1(3): 472-481. [18]Jullok N, Deforche T, Luis P, et al. Sorption and diffusivity study of acetic acid and water in polymeric membranes[J]. Chem Eng Sci, 2012, 78: 14-20. [19]Jin C G, Yin M J, Wu J K, et al. Development of high-performance and robust membrane via ‘hard-crosslinking-soft’ technique for dehydration of acetic acid[J]. J Membr Sci, 2022, 643:120033. [20]Lei L, Zhong L, Lin X, et al. Synthesis and characterization of waterborne polyurethane dispersions with different chain extenders for potential application in waterborne ink [J]. Chem Eng J, 2014, 253: 518-525. [21]Sagle L B, Zhang Y, Litosh V A, et al. Investigating the hydrogen-bonding model of urea denaturation[J]. J Am Chem Soc, 2009, 131(26): 9304-9310. [22]王桂荣, 崔雪霞, 贾晓强, 等. 2,4-甲苯二氨基甲酸酯分解反应性能及机理[J]. 2018, 34(6): 1082-1088. [23]Williams B L, Ding H, Hou Z L, et al. Highly efficient polyvinyl alcohol/montmorillonite flame retardant nanocoating for corrugated cardboard[J]. Advanced Composites and Hybrid Materials, 2021, 4(3): 662-669. [24]Fang C, Zhu K, Zhu X, et al. Preparation and characterization of self-crosslinking fluorinated polyacrylate latexes and their pressure sensitive adhesive applications[J]. International Journal of Adhesion and Adhesives, 2019, 95: 102417. [25]杨浩, 皮丕辉, 文秀芳, 等. 氟化(甲基)丙烯酸酯聚合物结构与表面润湿性[J]. 化学进展, 2010, 22(6): 1133-1141. [26]Dave H K, Nath K. Effect of Temperature on pervaporation dehydration of water-acetic acid binary mixture[J]. J Sci Ind Res, 2017, 76(4): 217-222. [27]Raisi A, Aroujalian A. Aroma compound recovery by hydrophobic pervaporation: The effect of membrane thickness and coupling phenomena[J]. Sep Purif Technol, 2011, 82: 53-62. [28]Dave H K, Nath K. Acetic acid separation as a function of temperature using commercial pervaporation membrane[J]. Iran J Chem Chem Eng, 2019, 38(2/4): 283-292. [29]Deng L, Kim T J, Hägg M B. Facilitated transport of CO2 in novel PVAm/PVA blend membrane[J]. Journal of Membrane Science, 2009, 340(1): 154-163. [30]Pakkethati K, Boonmalert A, Chaisuwan T, et al. Development of polybenzoxazine membranes for ethanol–water separation via pervaporation[J]. Desalination, 2011, 267(1): 73-81. [31]Jullok N, Darvishmanesh S, Luis P, et al. The potential of pervaporation for separation of acetic acid and water mixtures using polyphenylsulfone membranes[J]. Chem Eng J, 2011, 175: 306-315. [32]Masuda T, Otani S, Tsuji T, et al. Preparation of hydrophilic and acid-proof silicalite-1 zeolite membrane and its application to selective separation of water from water solutions of concentrated acetic acid by pervaporation[J]. Sep Purif Technol, 2003, 32(1-3): 181-189. [33]Chapman P D, Oliveira T, Livingston A G, et al. Membranes for the dehydration of solvents by pervaporation[J]. J Membr Sci, 2008, 318(1-2): 5-37. [34]Cui Y, Kita H, Okamoto K I. Zeolite T membranes: preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability [J]. J Membr Sci, 2004, 236(1/2): 17-27. [35]Rao P S, Krishnaiah A, Smitha B, et al. Separation of acetic acid/water mixtures by pervaporation through poly(vinyl alcohol)-sodium alginate blend membranes[J]. Sep Sci Technol, 2006, 41(5): 979-999. [36]Chaudhari S, Kwon Y, Moon M, et al. In situ generation of silver nanoparticles in poly(vinyl alcohol)/poly(acrylic acid) polymer membranes in the absence of reducing agent and their effect on pervaporation of a water/acetic acid mixture[J]. Bull Korean Chem Soc, 2016, 37(12): 1985-1991. [37]Moulik S, Nazia S, Vani B, et al. Pervaporation separation of acetic acid/water mixtures through sodium alginate/polyaniline polyion complex membrane [J]. Sep Purif Technol, 2016, 170: 30-39. [38]Okuno H, Nishirnoto H. Behaviour of permeation and separation for aqueous organic acid solutions through poly(viny1 chloride) and poly[(vinyl chloride)-co-(vinyl acetate)] membranes[J]. Makromol Chem, 1993, 194(3): 927-939. [39]Cheng G J, Ming J Y, Jia K W, et al. Development of high-performance and robust membrane via ‘hard-crosslinking-soft’ technique for dehydration of acetic acid[J]. J Membr Sci, 2022, 643: 120033. [40]Samanta H S, Ray S K, Das P, et al. Separation of acid-water mixtures by pervaporation using nanoparticle filled mixed matrix copolymer membranes[J]. J Chem Technol Biotechnol, 2012, 87(5): 608-622. [41]Badiger H, Shukla S, Kalyani S, et al.Thin film composite sodium alginate membranes for dehydration of acetic acid and isobutanol[J]. J Appl Polym Sci, 2014, 131(6). [42]Chen J H, Liu Q L, Zhu A M, et al. Dehydration of acetic acid using sulfonation cardo polyetherketone (SPEK-C) membranes[J]. J Membr Sci, 2008, 308(1-2): 171-179. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号