MoS2/RGO复合分离膜的制备及其水处理性能
作者:刘璇,李明阳,余翔,黄朝
单位: 1.上海海洋大学工程学院,上海201306;2. 上海交通大学薄膜与微细加工技术教育部重点实验室,上海 200240
关键词: 还原氧化石墨烯;二硫化钼;复合膜;水处理
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2023,43(4):145-153

摘要:
 为了解决氧化石墨烯(GO)膜不稳定性和低水通量的问题,本文利用水热法制备了二硫化钼(MoS2)纳米片与还原氧化石墨烯(RGO),并通过真空抽滤法在聚醚砜支撑膜上制备出MoS2/RGO复合膜。结果表明,当MoS2与RGO的质量比为9:10时,所制备的复合膜表现出高达35 L/(m2·h·MPa)的水渗透率,为纯氧化石墨烯膜的10.6倍,对硫酸钠的截留率达到86.7%,并且对甲基蓝以及刚果红的截留率分别为97.8%、98.6%,同时,对不同pH和不同浓度刚果红溶液的截留率均达到95%以上。此外,经测试该膜具有较好的稳定性,在水处理分离复合膜中具有巨大的应用潜力。
 In order to solve the problems of instability and low water flux of graphene oxide (GO) membranes, molybdenum disulfide (MoS2) nanosheets with reduced graphene oxide (RGO) were prepared by hydrothermal method in this paper, and MoS2/RGO composite membranes were prepared on polyethersulfone supported membranes by vacuum filtration. The results showed that when the mass ratio of MoS2 to RGO was 9:10, the prepared composite membranes exhibited a pure water flux of up to 35 L/(m2·h·MPa), which was 10.6 times higher than that of pure graphene oxide membranes, and achieved a retention rate of 86.7% for sodium sulfate, and 97.8% and 98.6% for methyl blue and Congo red, respectively, while the retention rates of different pH values, different The retention rate of Congo red at different pH values and concentrations reached over 95%. In addition, the membrane has been tested to have good stability and has great potential for application in water treatment composite membranes.
 

基金项目:
国家自然科学基金(51005145、51075258);上海市科学技术委员会项目(19DZ2254800)

作者简介:
刘璇(1975—)女,山东登州人,副教授,研究方向为高性能水处理材料开发及性能研究。E-mail:xliu@shou.edu.cn

参考文献:
[1]Ren Z J, Umble A K. Recover wastewater resources locally[J]. Nature, 2016, 529(7584): 25-25.
[2]黄英, 王利. 水处理中膜分离技术的应用[J]. 工业水处理, 2005, 25(004):8-11.
[3]Ma J, Tang X D, He Y, et al. Robust stable MoS2/GO filtration membrane for effective removal of dyesand salts from water with enhanced permeability[J]. Desalination, 2020, 480:114328.
[4]Hu M, Mi B X. Enabling graphene oxide nanosheets as water separation membranes[J]. Environmental Science & Technology, 2013, 47(8):3715-3723.
[5]Hung W S, Tsou C H, Guzman M D, et al. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing[J]. Chemistry of Materials, 2014, 26(9):2983–2990.
[6]Zhang Q, Qian X, Thebo K H, et al. Controlling reduction degree of graphene oxide membranes for improved water permeance[J]. Science Bulletin, 2018, 63(12):788-794.
[7]Deng H H, Zheng Q W, Chen H B, et al. Graphene oxide/silica composite nanofiltration membrane: Adjustment of the channel of water permeation[J]. Separation and Purification Technology, 2022, 278:119440.
[8]Yan X J, Cheng S R, Ma C, et al. D-spacing controllable GO membrane intercalated by sodium tetraborate pentahydrate for dye contamination wastewater treatment[J]. Journal of Hazardous Materials, 2022, 422:126939.
[9]Yan X J, Tao W, Cheng S R, et al. Layer-by-layer assembly of bio-inspired borate/graphene oxide membranes for dye removal[J]. Chemosphere, 2020, 256:127118. 
[10]Chen L, Shi G, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550:380-383.
[11]Liu Y, Zhao Y C, Zhang X B, et al. MoS2-based membranes in water treatment and purification[J]. Chemical Engineering Journal, 2021, 422:130082.
[12]Yadav S, Ibrar I, Altaee A, et al. Feasibility of brackish water and landfill leachate treatment by GO/MoS2-PVA composite membranes[J]. Science of The Total Environment,2020,745:141008.
[13]Li B, Liang X, Li G, et al.Inkjet-printed ultrathin MoS2-based electrodes for flexible in-plane microsupercapacitors[J]. Acs Applied Materials & Interfaces, 2020, 12(35):39444-39454.
[14]Deng M M, Kwac K J, Li M, et al. Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide[J]. Nano Letters, 2017, 17(4):2342-2348.
[15]Jiao Y C, Mukhopadhyay A, Yang L, et al. Ion transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-Ion batteries[J]. Advanced Energy Materials, 2018, 8:1702779.
[16]Al-Gaashani R, Najjar A, Zakaria Y, et al. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods[J]. Ceramics International, 2019,45(11):14439-14448.
[17]陈甜, 年佩, 李亚男,等. 二维Ag@MoS2-GO复合纳滤膜的制备及其性能[J]. 膜科学与技术, 2022, 42(5):33-41.
[18]Wang Z Y, Tu Q S, Zheng S X, et al. Understanding the aqueous stability and filtration capability of MoS2 membranes[J]. Nano Letters, 2017, 17(12): 7289-7298.
[19]Akbari A , Sheath P, Martin S T , et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide[J]. Nature Communications, 2016, 7:10891.
[20]Tang Y C, Zhang X R, Choi P, et al. Probing single-molecule adhesion of a stimuli responsive oligo(ethylene glycol) methacrylate copolymer on a molecularly smooth hydrophobic MoS2 basal plane surface[J]. Langmuir, 2017, 33(40):10429-10438.
[21]Wang T, He X P, Li Y, et al. Novel poly(piperazine-amide) (PA) nanofiltration membrane based poly(m-phenylene isophthalamide) (PMIA) hollow fiber substrate for treatment of dye solutions[J]. Chemical Engineering Journal, 2018,351:1013-1026.
[22]Januário E F D,Vidovix T B, Beluci N, et al. Advanced graphene oxide-based membranes as a potential alternative for dyes removal: A review[J]. Science of The Total Environment, 2021, 789:147957.
[23]Han Y, XU Z, Gao C. Ultrathin graphene nanofiltration membrane for water purification[J]. Advanced Functional Materials, 2013, 23(29):3693-3700.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号