聚二甲基硅氧烷材料在有机溶剂纳滤膜的研究进展 |
作者:王一达,王艳 |
单位: 华中科技大学 化学与化工学院,武汉430074 |
关键词: 有机溶剂纳滤;聚二甲基硅氧烷;复合膜改性;制膜工艺 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2023,43(4):159-171 |
摘要: |
有机溶剂纳滤技术是先进、节能、环保的分离技术,相比于传统净化与分离工艺存在价格与操作优势。聚二甲基硅氧烷材料,因其较好的非极性溶剂亲和力、耐化学性、耐热性、易制膜等优点,在有机溶剂纳滤膜领域中用途广泛。本文从膜类型和膜制备两个角度对聚二甲基硅氧烷材料在有机溶剂纳滤膜的研究进展进行了简要综述,讨论了聚二甲基硅氧烷材料作有机复合膜选择层与无机膜接枝层的应用,同时对多种制膜工艺进行总结。 |
Organic solvent nanofiltration (OSN) technology, as an advanced, environmental-friendly and energy-saving separation technology, has the merits of low cost and facile operation compared with conventional separation technologies. In a variety of polymeric materials, polydimethylsiloxane (PDMS) has been widely reported for OSN applications for its high affinity to non-polar solvents, good film-forming ability, good chemical and thermal resistance. The article reviews the recent development of PDMS-based membranes in OSN applications from the perspectives of the membrane type and fabrication technology. Related works on PDMS as the selective layer of the composite membrane as well as the grafting material for both polymeric and ceramic membranes are discussed comprehensively. Different membrane fabrication technologies are also summarized here. |
基金项目: |
国家重点研发计划课题(2020YFB1709301) |
作者简介: |
王一达(2000-),男,硕士生,主要从事有机溶剂纳滤分离研究。 |
参考文献: |
[1] LI C, LI J, ZHANG W-H, et al. Enhanced permeance for PDMS organic solvent nanofiltration membranes using modified mesoporous silica nanoparticles [J]. J Membr Sci, 2020, 612: 118257. [2] ZHOU H, AKRAM A, SEMIAO A J C, et al. Enhancement of performance and stability of thin-film nanocomposite membranes for organic solvent nanofiltration using hypercrosslinked polymer additives [J]. J Membr Sci, 2022, 644: 120172. [3] PUSPASARI T, CHAKRABARTY T, GENDUSO G, et al. Unique cellulose/polydimethylsiloxane blends as an advanced hybrid material for organic solvent nanofiltration and pervaporation membranes [J]. J Mater Chem A, 2018, 6(28): 13685-95. [4] MARCHETTI P, JIMENEZ SOLOMON M F, SZEKELY G, et al. Molecular separation with organic solvent nanofiltration: A critical review [J]. Chem Rev, 2014, 114(21): 10735-806. [5] ISMAIL E, LAZIM N H, NAKATA A, et al. Plasma-induced interfacial crosslinking of liquid polydimethylsiloxane films and their organic solvent permeation performance [J]. Chem Lett, 2020, 49(11): 1286-90. [6] LIU Q, XU S, XIONG S, et al. Coordination-crosslinked polyimide supported membrane for ultrafast molecular separation in multi-solvent systems [J]. Chem Eng J, 2022, 427: 130941. [7] HAN C, LIU H, WANG Y. An ultrapermeable thin film composite membrane supported by “green” nanofibrous polyimide substrate for polar aprotic organic solvent recovery [J]. J Membr Sci, 2022, 644: 120192. [8] 梁懿之, 王肖肖, 李灿, et al. 界面聚合法制备高通量复合耐溶剂纳滤膜 [J]. 膜科学与技术, 2019, 39(04): 38-46. [9] VALTCHEVA I B, KUMBHARKAR S C, KIM J F, et al. Beyond polyimide: Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments [J]. J Membr Sci, 2014, 457: 62-72. [10] XU Y C, WANG Z X, CHENG X Q, et al. Positively charged nanofiltration membranes via economically mussel-substance-simulated co-deposition for textile wastewater treatment [J]. Chem Eng J, 2016, 303: 555-64. [11] HAN C, LIU Q, XIA Q, et al. Facilely cyclization-modified PAN nanofiber substrate of thin film composite membrane for ultrafast polar solvent separation [J]. J Membr Sci, 2022, 641: 119911. [12] ASADI TASHVIGH A, FENG Y, WEBER M, et al. 110th anniversary: Selection of cross-linkers and cross-linking procedures for the fabrication of solvent-resistant nanofiltration membranes: A review [J]. Ind Eng Chem Res, 2019, 58(25): 10678-91. [13] VAN GESTEL T, VANDECASTEELE C, BUEKENHOUDT A, et al. Corrosion properties of alumina and titania NF membranes [J]. J Membr Sci, 2003, 214(1): 21-9. [14] GONZALES R R, KATO N, AWAJI H, et al. Development of polydimethylsiloxane composite membrane for organic solvent separation [J]. Sep Purif Technol, 2022, 285: 120369. [15] BEN SOLTANE H, ROIZARD D, FAVRE E. Study of the rejection of various solutes in OSN by a composite polydimethylsiloxane membrane: Investigation of the role of solute affinity [J]. Sep Purif Technol, 2016, 161: 193-201. [16] ZHANG Y, ZHANG H, LI Y, et al. Tuning the performance of composite membranes by optimizing PDMS content and cross-linking time for solvent resistant nanofiltration [J]. Ind Eng Chem Res, 2015, 54(23): 6175-86. [17] LIU J, MU W, WANG J, et al. Polydopamine-enabled distribution of polysiloxane domains in polyamide thin-film nanocomposite membranes for organic solvent nanofiltration [J]. Sep Purif Technol, 2018, 205: 140-50. [18] LI X, CHEN B, CAI W, et al. Highly stable PDMS–PTFPMS/PVDF OSN membranes for hexane recovery during vegetable oil production [J]. RSC Adv, 2017, 7(19): 11381-8. [19] LIM S K, GOH K, BAE T-H, et al. Polymer-based membranes for solvent-resistant nanofiltration: A review [J]. Chin J Chem Eng, 2017, 25(11): 1653-75. [20] LI C, LI J, CAO T, et al. Impact of crosslinking on organic solvent nanofiltration performance in polydimethylsiloxane composite membrane: Probed by in-situ low-field nuclear magnetic resonance spectroscopy [J]. J Membr Sci, 2021, 633: 119382. [21] AERTS S, VANHULSEL A, BUEKENHOUDT A, et al. Plasma-treated PDMS-membranes in solvent resistant nanofiltration: Characterization and study of transport mechanism [J]. J Membr Sci, 2006, 275(1): 212-9. [22] WU X, HAO L, ZHANG J, et al. Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system [J]. J Membr Sci, 2016, 515: 175-88. [23] HAO L, ZHANG H, WU X, et al. Novel thin-film nanocomposite membranes filled with multi-functional Ti3C2Tx nanosheets for task-specific solvent transport [J]. Compos Part A Appl Sci Manuf, 2017, 100: 139-49. [24] CHAU J, BASAK P, KAUR J, et al. Performance of a composite membrane of a perfluorodioxole copolymer in organic solvent nanofiltration [J]. Sep Purif Technol, 2018, 199: 233-41. [25] CHAU J, SIRKAR K K. Organic solvent mixture separation during reverse osmosis and nanofiltration by a perfluorodioxole copolymer membrane [J]. J Membr Sci, 2021, 618: 118663. [26] MIYATA T, TAKAGI T, KADOTA T, et al. Characteristics of permeation and separation for aqueous ethanol solutions through methyl methacrylate-dimethylsiloxane graft copolymer membranes [J]. Macromol Chem Phys, 1995, 196(4): 1211-20. [27] OHSHIMA T, KOGAMI Y, MIYATA T, et al. Pervaporation characteristics of cross-linked poly(dimethylsiloxane) membranes for removal of various volatile organic compounds from water [J]. J Membr Sci, 2005, 260(1): 156-63. [28] PARK H B, KIM C K, LEE Y M. Gas separation properties of polysiloxane/polyether mixed soft segment urethane urea membranes [J]. J Membr Sci, 2002, 204(1): 257-69. [29] ZHAO X, SU Y, LI Y, et al. Engineering amphiphilic membrane surfaces based on PEO and PDMS segments for improved antifouling performances [J]. J Membr Sci, 2014, 450: 111-23. [30] REIJERKERK S R, KNOEF M H, NIJMEIJER K, et al. Poly(ethylene glycol) and poly(dimethyl siloxane): Combining their advantages into efficient CO2 gas separation membranes [J]. J Membr Sci, 2010, 352(1): 126-35. [31] LIU W, LI Y, MENG X, et al. Embedding dopamine nanoaggregates into a poly(dimethylsiloxane) membrane to confer controlled interactions and free volume for enhanced separation performance [J]. J Mater Chem A, 2013, 1(11): 3713-23. [32] KRAMER P W, YEH Y S, YASUDA H. Low temperature plasma for the preparation of separation membranes [J]. J Membr Sci, 1989, 46(1): 1-28. [33] HOUSTON K S, WEINKAUF D H, STEWART F F. Gas transport characteristics of plasma treated poly(dimethylsiloxane) and polyphosphazene membrane materials [J]. J Membr Sci, 2002, 205(1): 103-12. [34] DOBRAK-VAN BERLO A, VANKELECOM I F J, VAN DER BRUGGEN B. Parameters determining transport mechanisms through unfilled and silicalite filled PDMS-based membranes and dense PI membranes in solvent resistant nanofiltration: Comparison with pervaporation [J]. J Membr Sci, 2011, 374(1): 138-49. [35] GEVERS L E M, VANKELECOM I F J, JACOBS P A. Solvent-resistant nanofiltration with filled polydimethylsiloxane (PDMS) membranes [J]. J Membr Sci, 2006, 278(1): 199-204. [36] VANHERCK K, AERTS A, MARTENS J, et al. Hollow filler based mixed matrix membranes [J]. ChemComm, 2010, 46(14): 2492-4. [37] GEVERS L E M, VANKELECOM I F J, JACOBS P A. Zeolite filled polydimethylsiloxane (PDMS) as an improved membrane for solvent-resistant nanofiltration (SRNF) [J]. ChemComm, 2005, (19): 2500-2. [38] LI Y, VERBIEST T, VANKELECOM I. Improving the flux of PDMS membranes via localized heating through incorporation of gold nanoparticles [J]. J Membr Sci, 2013, 428: 63-9. [39] BASU S, MAES M, CANO-ODENA A, et al. Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks [J]. J Membr Sci, 2009, 344(1): 190-8. [40] SHAO L, CHENG X, WANG Z, et al. Tuning the performance of polypyrrole-based solvent-resistant composite nanofiltration membranes by optimizing polymerization conditions and incorporating graphene oxide [J]. J Membr Sci, 2014, 452: 82-9. [41] ROWSELL J L C, YAGHI O M. Metal–organic frameworks: a new class of porous materials [J]. Microporous Mesoporous Mater, 2004, 73(1): 3-14. [42] CHAE H K, SIBERIO-PéREZ D Y, KIM J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature, 2004, 427(6974): 523-7. [43] ABDELSAMAD A M A, MATTHIAS M, KHALIL A S G, et al. Nanofillers dissolution as a crucial challenge for the performance stability of thin-film nanocomposite desalination membranes [J]. Sep Purif Technol, 2019, 228: 115767. [44] GU T, REN Z, LI X, et al. A flexible smart membrane consisting of GO composite fibres and upconversion MSNs for microRNA detection [J]. ChemComm, 2019, 55(62): 9104-7. [45] SONG N, YANG Y-W. Molecular and supramolecular switches on mesoporous silica nanoparticles [J]. Chem Soc Rev, 2015, 44(11): 3474-504. [46] JU K-Y, LEE Y, LEE S, et al. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property [J]. Biomacromolecules, 2011, 12(3): 625-32. [47] DAWSON R, COOPER A I, ADAMS D J. Nanoporous organic polymer networks [J]. Prog Polym Sci, 2012, 37(4): 530-63. [48] LAU C H, MULET X, KONSTAS K, et al. Hypercrosslinked additives for ageless gas-separation membranes [J]. Angew Chem Int Ed, 2016, 55(6): 1998-2001. [49] ZHANG H, ZHANG Y, LI L, et al. Cross-linked polyacrylonitrile/polyethyleneimine–polydimethylsiloxane composite membrane for solvent resistant nanofiltration [J]. Chem Eng Sci, 2014, 106: 157–66. [50] TRIVEDI J S, BERA P, BHALANI D V, et al. In situ amphiphilic modification of thin film composite membrane for application in aqueous and organic solvents [J]. J Membr Sci, 2021, 626: 119155. [51] PINHEIRO A F M, HOOGENDOORN D, NIJMEIJER A, et al. Development of a PDMS-grafted alumina membrane and its evaluation as solvent resistant nanofiltration membrane [J]. J Membr Sci, 2014, 463: 24-32. [52] TANARDI C R, PINHEIRO A F M, NIJMEIJER A, et al. PDMS grafting of mesoporous γ-alumina membranes for nanofiltration of organic solvents [J]. J Membr Sci, 2014, 469: 471-7. [53] TANARDI C R, NIJMEIJER A, WINNUBST L. Coupled-PDMS grafted mesoporous γ-alumina membranes for solvent nanofiltration [J]. Sep Purif Technol, 2016, 169: 223-9. [54] MERLET R B, TANARDI C R, VANKELECOM I F J, et al. Interpreting rejection in SRNF across grafted ceramic membranes through the Spiegler-Kedem model [J]. J Membr Sci, 2017, 525: 359-67. [55] 何志富, 黄凯, 高蔓彤, et al. 可溶性聚酰亚胺膜的制备及其纳滤分离特性研究 [J]. 膜科学与技术, 2018, 38(04): 70-4. [56] 房昺, 潘凯, 曹兵. 均苯型聚酰亚胺耐溶剂纳滤膜的制备 [J]. 膜科学与技术, 2012, 32(02): 1-4. [57] KHALILI M, SABBAGHI S, ZERAFAT M M. Preparation of ceramic γ-Al2O3-TiO2 nanofiltration membranes for desalination [J]. Chemical Papers, 2015, 69(2): 309-15. [58] CAI C, SONG B, XUE P, et al. A novel near α-Ti alloy prepared by hot isostatic pressing: Microstructure evolution mechanism and high temperature tensile properties [J]. Materials & Design, 2016, 106: 371-9. [59] VINOTH KUMAR R, KUMAR GHOSHAL A, PUGAZHENTHI G. Elaboration of novel tubular ceramic membrane from inexpensive raw materials by extrusion method and its performance in microfiltration of synthetic oily wastewater treatment [J]. J Membr Sci, 2015, 490: 92-102. [60] WANG H T, LIU X Q, MENG G Y. Porous α-Al2O3 ceramics prepared by gelcasting [J]. Materials Research Bulletin, 1997, 32(12): 1705-12. [61] LINDQVIST K, LIDéN E. Preparation of alumina membranes by tape casting and dip coating [J]. Journal of the European Ceramic Society, 1997, 17(2): 359-66. [62] MOHAMMAD A W, TEOW Y H, ANG W L, et al. Nanofiltration membranes review: Recent advances and future prospects [J]. Desalination, 2015, 356: 226-54. [63] SHI G M, FENG Y, LI B, et al. Recent progress of organic solvent nanofiltration membranes [J]. Prog Polym Sci, 2021, 123: 101470. [64] WEY M-Y, TSENG H-H, CHIANG C-K. Improving the mechanical strength and gas separation performance of CMS membranes by simply sintering treatment of α-Al2O3 support [J]. J Membr Sci, 2014, 453: 603-13. [65] AMIRILARGANI M, SADRZADEH M, SUDHöLTER E J R, et al. Surface modification methods of organic solvent nanofiltration membranes [J]. Chem Eng J, 2016, 289: 562-82. [66] BUEKENHOUDT A, BECKERS H, ORMEROD D, et al. Solvent based membrane nanofiltration for process intensification [J]. Chem Ing Tech, 2013, 85(8): 1243-7. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号