PVDF超疏水膜的研制及空气过滤初探 |
作者:史艳阳,陈小乐,苗闪闪,方 强,武春瑞,吕晓龙 |
单位: 省部共建分离膜与膜过程国家重点实验室,材料科学与工程学院,天津工业大学,天津 300387 |
关键词: 聚偏氟乙烯;超疏水膜;非溶剂致相分离法;空气过滤 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2023,43(5):12-19 |
摘要: |
提高膜表面的疏水性是解决空气过滤过程中出现膜润湿现象的必要手段,而提高膜孔隙率是解决空气过滤过程中压降过大的直接方法。本文以聚偏氟乙烯(PVDF)为膜材料,N,N-二甲基乙酰胺(DMAc)为溶剂,氯化锂为添加剂,采用非溶剂致相分离方法制备PVDF超疏水膜,考察了添加剂氯化锂对膜接触角以及空气过滤过程压降的影响。结果表明,当膜中氯化锂含量为3wt.%时,PVDF超疏水膜的表面接触角为161°,膜截面形成颗粒堆积的疏松结构,孔隙率达到83.1%,气体通量为52 mL/(m2·s·Pa),压降为401 Pa,空气的过滤效率达到90%以上。 |
Improving the hydrophobicity of membrane surface is necessary to solve the membrane wetting phenomenon in air filtration process, while increasing the membrane porosity is a direct way to solve the excessive pressure drop in air filtration process. In this paper, PVDF superhydrophobic membranes were prepared using polyvinylidene fluoride (PVDF) as the membrane material, N,N-dimethylacetamide (DMAc) as the solvent and lithium chloride as the additive, and the effect of the additive lithium chloride on the contact angle and pressure drop of the membrane was investigated. The results showed that when the content of lithium chloride in the membrane was 3 wt.%, the surface contact angle of PVDF superhydrophobic membrane was 161°, the membrane cross-section formed a loose structure of particle accumulation, the porosity reached 83.1%, the gas flux was 52 mL/(m2·s·Pa), the pressure drop was 401 Pa, and the air filtration efficiency reached more than 90%. |
基金项目: |
国家自然科学面上基金项目(52170047) |
作者简介: |
史艳阳(1996-),河南商丘人,主要从事分离膜制备与应用, |
参考文献: |
[1]Liu G, Xiao M, Zhang X, et al. A review of air filtration technologies for sustainable and healthy building ventilation[J]. Sustainable Cities and Society, 2017, 32: 375-396. [2]Bulejko P, Dohnal M, Pospíšil J, et al. Air filtration performance of symmetric polypropylene hollow-fibre membranes for nanoparticle removal[J]. Separation and Purification Technology, 2018, 197: 122-128. [3]Wang L Y, Yu L E, Lai J Y, et al. Developing ultra-high gas permeance PVDF hollow fibers for air filtration applications[J]. Separation and Purification Technology, 2018, 205: 184-195. [4]Wang Z, Yan F, Pei H C, et al. Antibacterial and environmentally friendly chitosan/polyvinyl alcohol blend membranes for air filtration[J]. Carbohydrate Polymers, 2018, 198: 241-248. [5]Wang L Y, Yong W F, Yu L E, et al. Design of high efficiency PVDF-PEG hollow fibers for air filtration of ultrafine particles[J]. Journal Of Membrane Science, 2017, 535: 342-349. [6]Wang C, Yang F, Zhang H. Fabrication of non-woven composite membrane by chitosan coating for resisting the adsorption of proteins and the adhesion of bacteria[J]. Separation and Purification Technology, 2010, 75(3): 358-365. [7]Yang C, Li X M, Gilron J, et al. CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation[J]. Journal of Membrane Science, 2014, 456: 155-161. [8]Remanan S, Bose M, Das A K, et al. Preparation and characterization of a unique low‐cost microfiltration membrane from a technologically compatible poly(ethylene‐co‐methyl acrylate)/poly(vinylidene fluoride) blend for water filtration application[J]. Journal of Applied Polymer Science, 2018, 136(12). [9]Naim R, Ismail A F, Mansourizadeh A. Preparation of microporous PVDF hollow fiber membrane contactors for CO2 stripping from diethanolamine solution[J]. Journal of Membrane Science, 2012, 392-393: 29-37. [10]Zheng L, Wang J, Yu D, et al. Preparation of PVDF-CTFE hydrophobic membrane by non-solvent induced phase inversion: Relation between polymorphism and phase inversion[J]. Journal of Membrane Science, 2018, 550: 480-491. [11]Wang D, Li K, Teo W K. Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molecular additives[J]. Journal of Membrane Science, 2000. [12]Shafie H M, Latifahmad A, Chunlow S, et al. Lithium chloride (LiCl)-modified polyethersulfone (PES) substrate surface pore architectures on thin poly(dimethylsiloxane) (PDMS) dense layer formation and the composite membrane's performance in gas separation[J]. RSC Adv, 2020, 10(16): 9500-9511. [13]刘道清. 空气过滤技术研究综述[J]. 环境科学与管理, 2007, 32(5): 5. [14]Wang Z, Zhao C, Pan Z. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration[J]. J Colloid Interface Sci, 2015, 441: 121-9. [15]Li Z, Kang W, Zhao H, et al. Fabrication of a polyvinylidene fluoride tree-like nanofiber web for ultra high performance air filtration[J]. RSC Advances, 2016, 6(94): 91243-91249. [16]Wang L Y, Yu L E, Lai J Y, et al. Effects of Pluronic F127 on phase inversion and membrane formation of PAN hollow fibers for air filtration[J]. Journal of Membrane Science, 2019, 584: 137-147. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号