水硅比调控有机-无机杂化SiO2膜制备与乙酸脱水渗透汽化性能
作者:张子男,任秀秀,钟璟,徐荣,郭猛,吴梓豪,刘若妍
单位: 常州大学 石油化工学院,江苏省绿色催化材料与技术重点实验室,江苏 常州213164
关键词: 杂化硅膜;水硅比;渗透汽化;乙酸脱水
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2023,43(5):44-49

摘要:
 以1,2-双(三乙氧基硅基)乙烷(BTESE)为硅源前驱体,通过酸催化溶胶-凝胶法制备了BTESE有机-无机杂化SiO2膜。为了提高其渗透汽化乙酸脱水性能,通过溶胶合成中水硅比(H2O/BTESE)对硅网络进行调控。随着水含量的增大,水解的Si-OH增多,形成的凝胶孔径得到了有效降低,在膜进行渗透汽化乙酸脱水中,分离因子增大,通量降低。水硅比为180制备出的BTESE膜具有最佳综合分离指数,75 ℃下渗透汽化分离90wt%乙酸/10wt%水溶液,渗透通量和分离因子分别为1.25 kg/(m2·h)和1050。将该膜分别浸泡在乙酸溶液和暴露在空气中,在长达80天的时间里膜的乙酸脱水分离性能基本保持稳定,具有较好的长期耐酸稳定性和耐氧化化学稳定性。
 BTESE organic-inorganic hybrid silica membranes were prepared by acid-catalyzed sol-gel method using 1,2-bis(triethoxysilyl)ethane (BTESE) as the silica precursor. To improve its pervaporation acetic acid dehydration performance, the silica network was regulated by the water to BTESE molar ratio (H2O/BTESE) in the sol-gel synthesis. As the water content increased, the hydrolyzed Si-OH increased and the pore size of the formed gel was effectively reduced, which increased the separation factor and decreased the flux in the membrane for pervaporation acetic acid dehydration. The BTESE membrane prepared with a molar ratio of 180 of H2O/BTESE showed the best overall separation index, with pervaporation separation of 90wt% acetic acid/10 wt% aqueous solution at 75 ℃ with permeate flux and separation factor of 1.25 kg/(m2·h) and 1050, respectively. The membrane was immersed in acetic acid solution and exposed to air, and the acetic acid dehydration separation performance of the membrane remained basically stable for up to 80 days, with good long-term acid resistance and anti-oxidation chemical stability.

基金项目:
国家重点研发计划(2022YFB3805003)资助项目;常州市科技计划项目(CJ20220140,CZ20220033);江苏省教育厅国际合作联合实验室

作者简介:
张子男(1997-),男,吉林辽源,硕士研究生,主要从事膜分离方面研究。

参考文献:
 [1]Aghbashlo M, Tabatabaei M, Rastegari H, et al. Exergy-based sustainability analysis of acetins synthesis through continuous esterification of glycerol in acetic acid using Amberlyst®36 as catalyst [J]. J Cleaner Prod, 2018, 183: 1265-1275.
[2]Pal P, Kumar R, Banerjee S. Manufacture of gluconic acid: A review towards process intensification for green production [J]. Chem Eng Process, 2016, 104: 160-171.
[3]Hao S, Jia Z, Wen J, et al. Progress in adsorptive membranes for separation – A review [J]. Sep Purif Technol, 2021, 255: 117772.
[4]Raza W, Wang J X, Yang J H, et al. Progress in pervaporation membranes for dehydration of acetic acid [J]. Sep Purif Technol, 2021, 262: 118338.
[5]李亚楠, 廖明佳, 龚耿浩. 聚合物支撑柔性有机二氧化硅杂化膜的制备与异丙醇脱水应用研究 [J]. 膜科学与技术, 2021, 41(6): 27-34, 42.
[6]Castricum H L, Kreiter R, van Veen H M, et al. High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability [J]. J Membr Sci, 2008, 324(1-2): 111-118.
[7]Tsuru T, Shibata T, Wang J H, et al. Pervaporation of acetic acid aqueous solutions by organosilica membranes [J]. J Membr Sci, 2012, 421: 25-31.
[8]Nagasawa H, Niimi T, Kanezashi M, et al. Modified gas-translation model for prediction of gas permeation through microporous organosilica membranes [J]. AIChE J, 2014, 60(12): 4199-4210.
[9]Raza W, Yang J H, Wang J X, et al. HCl modification and pervaporation performance of BTESE membrane for the dehydration of acetic acid/water mixture [J]. Sep Purif Technol, 2020, 235:116102.
[10]王佳轩, 李良清, 马磊, 等. 两步变温晶种法制备丝光沸石膜及其渗透汽化乙酸脱水性能 [J]. 无机化学学报, 2023, 39(1): 91-97.
[11]李璘喆, 杨建华. CHA型分子筛膜的研究进展 [J]. 膜科学与技术, 2022, 42(02): 138-145.
[12]Song H, Wei Y, Wang C, et al. Tuning sol size to optimize organosilica membranes for gas separation [J]. Chin J Chem Eng, 2018, 26(1): 53-59.
[13]Ciriminna R, Fidalgo A, Pandarus V, et al. The Sol–Gel Route to Advanced Silica-Based Materials and Recent Applications [J]. Chem Rev, 2013, 113(8): 6592-6620.
[14]廖明佳, 朱韵, 任秀秀, 等. 微孔桥联有机硅杂化膜的制备方法及影响因素研究进展 [J]. 膜科学与技术, 2021, 41(2): 147-156.
[15]Ibrahim S M, Nagasawa H, Kanezashi M, et al. Robust organosilica membranes for high temperature reverse osmosis (RO) application: Membrane preparation, separation characteristics of solutes and membrane regeneration [J]. J Membr Sci, 2015, 493: 515-523.
[16]Asaeda M, Yang J, Sakou Y. Porous silica-zirconia (50%) membranes for pervaporation of iso-propyl alcohol (IPA)/water mixtures [J]. J Chem Eng Jpn, 2002, 35(4): 365-371.
[17]Yang J H, Yoshioka T, Tsuru T, et al. Pervaporation characteristics of aqueous–organic solutions with microporous SiO2–ZrO2 membranes: Experimental study on separation mechanism [J]. J Membr Sci, 2006, 284(1): 205-213.
[18]Ren X X, Yu H, Guo M, et al. Long alkyl chain-containing organosilica/silicalite-1 composite membranes for alcohol recovery [J]. Microporous Mesoporous Mater, 2022, 338: 111947.
[19]Ma X, Hu C, Guo R, et al. HZSM5-filled cellulose acetate membranes for pervaporation separation of methanol/MTBE mixtures [J]. Sep Purif Technol, 2008, 59(1): 34-42.
[20]马顺选, 宋小三, 王三反, 等. 渗透汽化膜的制备及其应用进展 [J]. 化工进展, 2021, 40(z2): 256-264.
[21]Niimi T, Nagasawa H, Kanezashi M, et al. Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation [J]. J Membr Sci, 2014, 455: 375-383.
[22]Moriyama N, Nagasawa H, Kanezashi M, et al. Bis(triethoxysilyl)ethane (BTESE)-derived silica membranes: pore formation mechanism and gas permeation properties [J]. J Sol-Gel Sci Technol, 2018, 86(1): 63-72.
[23]Wang J H, Kanezashi M, Yoshioka T, et al. Effect of calcination temperature on the PV dehydration performance of alcohol aqueous solutions through BTESE-derived silica membranes [J]. J Membr Sci, 2012, 415: 810-815.
[24]Kanezashi M, Kawano M, Yoshioka T, et al. Organic–Inorganic Hybrid Silica Membranes with Controlled Silica Network Size for Propylene/Propane Separation [J]. Ind Eng Chem Res, 2012, 51(2): 944-953.
[25]Kaneko K, Ishii C, Ruike M, et al. Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons [J]. Carbon, 1992, 30(7): 1075-1088.
[26]Tsuru T, Izumi S, Yoshioka T, et al. Temperature effect on transport performance by inorganic nanofiltration membranes [J]. AIChE J, 2000, 46(3): 565-574.
[27]Asaeda M, Ishida M, Waki T. Pervaporation of Aqueous Organic Acid Solutions by Porous Ceramic Membranes [J]. J Chem Eng Jpn, 2005, 38(5): 336-343.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号