不对称双层聚酰胺纳滤膜的制备及其性能研究
作者:付欣宇,王建强,计艳丽,刘富
单位: 1. 浙江工业大学 膜分离与水科学技术研究院,杭州 310014;2. 中国科学院 宁波材料技术与工程研究所,宁波 315201;3. 中国科学院大学,北京 100049
关键词: 不对称聚酰胺;双层聚酰胺;界面聚合;纳滤
DOI号:
分类号: O63
出版年,卷(期):页码: 2023,43(5):50-57

摘要:
 薄膜复合(TFC)纳滤膜作为一种新型膜分离技术,在水处理领域被人们广泛应用。减少聚酰胺层的厚度有利于增强TFC纳滤膜的渗透性。然而,具有超薄聚酰胺层的TFC纳滤膜的实际应用仍然面临巨大挑战。在此,我们提出了通过一步自由界面聚合法制备不对称双层聚酰胺纳滤膜的策略。所得不对称双层聚酰胺纳滤膜的上层聚酰胺层具有薄、光滑、致密的特点,相应的下层聚酰胺层则相对较厚、粗糙、疏松。薄而致密的上层聚酰胺层使得复合膜具有相对较高的透水率[18.5±1.0 L/(m2·h·bar)]和高截留率(Na2SO4,97.2±0.8%),较厚而疏松的下层聚酰胺层使得复合膜具有长时间运行稳定性。该研究为提高聚酰胺纳滤膜的分离性能提供了一种具有应用前景的制备方法。
 Thin film composite (TFC) nanofiltration membranes are widely used in the field of water treatment as a new membrane separation technology. Reducing the thickness of the polyamide separation layer is beneficial for enhancing the permeability of TFC nanofiltration membranes. However, the practical application of TFC nanofiltration membranes with an ultra-thin polyamide layer still faces great challenges. Here, we propose a strategy for the preparation of asymmetric dual-layer polyamide nanofiltration membranes by one-step free interfacial polymerization. The resulting asymmetric dual-layer polyamide nanofiltration membranes have a thin, smooth and dense top polyamide separation layer, while the corresponding bottom polyamide separation layer is relatively thick, rough and sparse. The thin and dense top polyamide layer results in a relatively high water permeability (18.5±1.0 L m-2 h-1 bar-1) and high retention (Na2SO4, 97.2±0.8%), while the thicker and looser bottom polyamide layer results in a long-term operational stability. This study provides a promising preparation strategy for improving the separation performance of polyamide composite membranes.
 

基金项目:
宁波市自然科学基金重点项目(202003N4031);中科院国际伙伴计划—全球共性挑战专项(181GJHZ2022038GC)

作者简介:
付欣宇(1995-),女,山西朔州,硕士,从事纳滤膜及其性能研究,E-mail:fuxinyu@nimte.ac.cn.

参考文献:
 [1] Elimelech M, Phillip W A. The Future of Seawater Desalination: Energy, Technology, and the Environment[J]. Science, 2011, 333(6043): 712-717.
[2] Yang Z, Ma X H, Tang C Y. Recent development of novel membranes for desalination[J]. Desalination, 2018, 434: 37-59.
[3] Shao S, Zeng F, Long L, et al. Nanofiltration Membranes with Crumpled Polyamide Films: A Critical Review on Mechanisms, Performances, and Environmental Applications[J]. Environmental Science & Technology, 2022, 56(18): 12811-12827. 
[4] Zhu Y, Xie W, Gao S, et al. Single-Walled Carbon Nanotube Film Supported Nanofiltration Membrane with a Nearly 10 nm Thick Polyamide Selective Layer for High-Flux and High-Rejection Desalination[J]. Small, 2016, 12(36): 5034-5041.
[5] Karan S, Jiang Z, Livingston A G. Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348: 1347-1351.
[6] Li Y, Su Y, Li J, et al. Preparation of thin film composite nanofiltration membrane with improved structural stability through the mediation of polydopamine[J]. Journal of Membrane Science, 2015, 476: 10-19.
[7] Yang Z, Zhou Z, Guo H, et al. Tannic Acid/Fe 3+ Nanoscaffold for Interfacial Polymerization: Toward Enhanced Nanofiltration Performance[J]. Environmental Science & Technology, 2018, 52(16): 9341-9349.
[8] 程荣, 姜培文, 夏锦程,等. 共价有机骨架材料在膜分离领域的应用进展[J]. 膜科学与技术, 2022, 42(5):154-163.
[9] 张逸娟, 宋春风, 连少翰,等. 功能化MOF基混合基质膜微环境调控策略[J]. 膜科学与技术, 2023, 43(1):165-173.
[10] Jiang Z, Karan S, Livingston A G. Water Transport through Ultrathin Polyamide Nanofilms Used for Reverse Osmosis[J]. Advanced Materials, 2018, 30(15): 1705973.
[11] Zhu J, Hou J, Zhang R, et al. Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration[J]. Journal of Materials Chemistry A, 2018, 6(32): 15701-15709.
[12] Peng L E, Yao Z, Yang Z, et al. Dissecting the Role of Substrate on the Morphology and Separation Properties of Thin Film Composite Polyamide Membranes: Seeing Is Believing[J]. Environmental Science & Technology, 2020, 54(11): 6978-6986.
[13] Chowdhury M R, Steffes J, Huey B D, et al. 3D printed polyamide membranes for desalination[J]. Science, 2018, 361(6403): 682-686.
[14] Zhang L, Liu F, Yang S, et al. Air nanobubbles (ANBs) incorporated sandwich-structured carbon nanotube membranes (CNM) for highly permeable and stable forward osmosis[J]. Advanced Membranes, 2022, 2: 100026.
[15] Lim Y J, Goh K, Lai G S, et al. Unraveling the role of support membrane chemistry and pore properties on the formation of thin-film composite polyamide membranes[J]. Journal of Membrane Science, 2021, 640: 119805.
[16] Ma X H, Yao Z K, Yang Z, et al. Elimelech M. Nanofoaming of Polyamide Desalination Membranes To Tune Permeability and Selectivity[J]. Environmental Science & Technology Letters, 2018, 5(2): 123-130.
[17] Shen L, Cheng R, Yi M, et al. Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving[J]. Nature Communications, 2022, 13(1): 500. 
[18] Yuan B, Zhao S, Hu P, et al. Asymmetric polyamide nanofilms with highly ordered nanovoids for water purification[J]. Nature Communications, 2020, 11(1): 6102.
[19] Schaep J, Van der Bruggen B, Vandecasteele C, et al. Influence of ion size and charge in nanofiltration[J]. Separation and Purification Technology, 1998, 14(1-3): 155-162.
[20] Fang W, Shi L, Wang R. Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability[J]. Journal of Membrane Science, 2014, 468: 52-61.
[21] Schaep J, Van der Bruggen B, Vandecasteele C, et al. Influence of ion size and charge in nanofiltration[J]. Separation and Purification Technology, 1998, 14(1-3): 155-162.
[22] Tang H, He J, Hao L, et al. Developing nanofiltration membrane based on microporous poly(tetrafluoroethylene) substrates by bi-stretching process[J]. Journal of Membrane Science, 2017, 524: 612-622.
[23] Zhang X, Lv Y, Yang H C, et al. Polyphenol Coating as an Interlayer for Thin-Film Composite Membranes with Enhanced Nanofiltration Performance[J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32512-32519.
[24] Zheng J, Li M, Yu K, et al. Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property[J]. Journal of Membrane Science, 2017, 524: 344-353.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号