聚醚酰亚胺多孔膜结构调控及其声学超材料吸声隔声性能
作者:顾凯,朱英文,尹振,佘晓俊,王坤,崔博,朱孟府
单位: 1. 天津科技大学化工与材料学院,天津 300457; 2. 军事科学院军事医学研究院环境医学与作业医学研究所,天津 300050; 3. 军事科学院系统工程研究院卫勤保障技术研究所,天津 300161
关键词: 聚醚酰亚胺;多孔膜;结构调控;声学超材料;吸声;隔声
DOI号:
分类号: TQ028;O422.4;TB535
出版年,卷(期):页码: 2023,43(5):65-73

摘要:
 以聚醚酰亚胺(PEI)为膜材料、N-甲基吡咯烷酮(NMP)为溶剂,采用相转化法制备PEI多孔膜,并构建PEI多孔膜声学超材料,考察了PEI浓度、刮膜厚度和凝固浴组成对多孔膜厚度、密度、形貌结构、拉伸强度以及多孔膜声学超材料在低频范围吸声性能和隔声性能的影响。结果表明:PEI浓度增加抑制了多孔膜指状孔结构形成,使多孔膜密度增加,声学超材料的平均吸声系数由0.075减小到0.040,平均隔声量由4.126 dB增加到6.263 dB;刮膜厚度增加使多孔膜指状孔数量减少,厚度增加,声学超材料的平均吸声系数由0.113减小到0.043,平均隔声量由3.149 dB增加到8.317 dB;凝固浴中加入NMP促进了多孔膜海绵状孔结构形成,当NMP浓度达到80%(v/v)时,多孔膜基本为海绵状孔结构,增加NMP浓度使多孔膜密度增加、厚度减小,由于密度和厚度的相反作用,在实验频率范围内凝固浴组成对多孔膜声学超材料吸声性能和隔声性能的影响规律不明显。
  The polyetherimide (PEI) porous membrane was prepared by phase inversion process using PEI as the membrane material and N-methylpyrrolidone (NMP) as the solvent, in which the PEI porous membrane acoustic metamaterial was further constructed. The effects of PEI concentration, scraping thickness, and coagulation bath composition on the thickness, density, morphology, and tensile strength of the PEI porous membrane, as well as the sound absorption properties and sound insulation properties of the porous membrane acoustic metamaterial in the low-frequency range were investigated. The results showed that increasing the PEI concentration inhibited the formation of finger-like pore structures and increased the density of the PEI porous membrane. By increasing the membrane density, the average absorption coefficient of the porous membrane acoustic metamaterial decreased from 0.075 to 0.040, and the average sound transmission loss increased from 4.126 dB to 6.263 dB. Increasing the scraping thickness decreased the number of finger-like pores and increased the thickness of the PEI porous membrane. The average absorption coefficient of the porous membrane acoustic metamaterial decreased from 0.113 to 0.043, and the average sound transmission loss increased from 3.149 dB to 8.317 dB. The addition of NMP to the coagulation bath promoted the formation of sponge-like pore structures in the PEI porous membrane. The PEI porous membrane was basically a fully sponge-like structure with the NMP concentration of 80% (v/v). Increasing the NMP concentration increased the density and decreased the thickness of the PEI membrane. Due to the opposite effect of density and thickness, the effect of coagulation bath composition on the sound absorption properties and sound insulation properties of the porous membrane acoustic metamaterial was not obvious in the experimental frequency range.

基金项目:
自主科研项目(2021ZZKY04)

作者简介:
顾凯(1997-),男,安徽六安人,硕士生,主要从事膜材料制备及其声学性能研究,E-mail:861034219@qq.com.

参考文献:
[1] 盖志辉, 崔博, 佘晓俊, 等. 基于NES-C4的噪声环境作业人员视觉相关作业工效的研究[J]. 解放军预防医学杂志, 2017, 35(9):1028-1030,1040.
[2] 赵松龄. 噪声的降低与隔离(下册)[M]// 上海: 同济大学出版社, 1989:5-6.
[3] Ding Y, Liu Z, Qiu C, et al. Metamaterial with simultaneously negative bulk modulus and mass density [J]. Phys Rev Lett, 2007, 99(9):093904.
[4] 冯涛, 王余华, 王晶, 等. 结构型声学超材料研究及应用进展[J]. 振动与冲击, 2021, 40(20):150-157.
[5] Yang Z, Mei J, Yang M, et al. Membrane-type acoustic metamaterial with negative dynamic mass[J]. Phys Rev Lett, 2008, 101,204301.
[6] Yang Z, Dai H, Chan N, et al. Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime[J]. Appl Phys Lett, 2010, 96:041906. 
[7] Naify C J, Chang C M, Mcknight G, et al. Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials [J]. J Appl Phys, 2010, 108 (11):114905.
[8] 张忠刚, 朱浩宇, 罗剑, 等. 吸声型薄膜声学超材料低频宽带吸声性能研究[J]. 应用声学, 2019, 38(5):869-875.
[9] 温激鸿. 声学超材料基础理论与应用[M]// 北京: 科学出版社, 2019:224-234.
[10] Ma F, Wu J, Huang M. One-dimensional rigid film acoustic metamaterials[J]. J Phys D: Appl Phys, 2015, 48(46):465305.
[11] Li Y, Zhang Y, Xie S. A lightweight multilayer honeycomb membrane-type acoustic metamaterial[J]. Appl Acoust, 2020, 168:107427.
[12] Wang S, Zhang X, Li F, et al. Sound transmission loss of a novel acoustic metamaterial sandwich panel: Theory and experiment[J]. Appl Acoust, 2022, 199:109035.
[13] Chen Y, Huang G, Zhou X, et al. Analytical coupled vi-broacoustic modeling of membrane-type acoustic metama-terials: plate model[J]. J Acoust Soc of Am, 2014,136(3):2926.
[14] 陈斌, 黄修长. 周期结构振动控制研究现状[J]. 噪声与振动控制, 2011, 31(5):37-41.
[15] 段翠佳, 曹义鸣, 陈赞. ZIF-8对Ultem®1000中空纤维气体分离膜性能影响研究[J]. 膜科学与技术, 2020, 40(03):88-94.
[16] 侯影飞, 王金凤, 刘敏. PVA/PEI复合纳滤膜的制备及性能优化[J]. 膜科学与技术, 2016, 36(06):53-60.
[17] 徐红梅, 魏俊富, 王晓磊, 等. 中空纤维超滤膜干燥过程中膜孔演变规律研究[J]. 天津工业大学学报, 2014, 33(03):7-11.
[18] 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12):35-41. 
[19] Jang J Y, Park C S, Song K. Lightweight soundproofing membrane acoustic metamaterial for broadband sound insulation[J]. Mech Syst Sign Process, 2022, 178:109270.
[20] 王贡献, 史蒙飞, 向磊, 等. 带背腔薄膜型声学超材料低频隔声特性分析[J]. 噪声与振动控制, 2023, 43(1):1-6.
[21] 李树轩, 黄良伟, 苏保卫, 等. 交联聚酰亚胺耐溶剂超滤膜的制备及性能研究[J]. 膜科学与技术, 2018, 38(05):47-54.
[22] Hussain A, Mehmood A, Saleem A, et al. Polyetherimide membrane with tunable porous morphology for safe lithium metal-based batteries[J]. Chem Eng J, 2023, 453:139804. 
[23] 欧阳果仔, 李新冬, 张鑫, 等. 聚醚酰亚胺耐溶剂超滤膜的制备及性能研究[J]. 材料工程, 2022, 50(08):160-168.
[24] 丁成成, 孔伟, 杨帅, 等. 聚酰亚胺不对称多孔膜的制备及表征[J]. 南京工业大学学报(自然科学版), 2020, 42(02):187-194.
[25] Xu X, Wang X, Mei Y. A design method for absorption of low-frequency noise using acoustic metamaterials[C]// IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2019, 569(3):032040.
[26] 储健, 王丽华, 虞鑫海. 新型聚芳醚砜锂离子电池隔膜的制备及性能[J]. 膜科学与技术, 2021, 41(06): 75-84.
[27] 项军, 胡肖丽, 唐娜, 等. 基于NIPS法聚苯砜超滤膜海绵状孔结构的微观调控[J]. 膜科学与技术, 2019, 39(06):71-79.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号