反应控制相转化法制备PVDF/SMA-g-PEG膜及性能研究 |
作者:贾旭莹,christine n. matindi,崔振宇,李建新 |
单位: 1.天津工业大学材料科学与工程学院,天津 300387;2.天津工业大学分离膜与膜过程国家重点实验室 |
关键词: 聚偏氟乙烯;聚苯乙烯-马来酸酐;聚乙二醇;反应-控制相转化法;共混超滤膜; |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2023,43(5):74-82 |
摘要: |
本文依据Schneier混合焓变理论计算预测、Flory-Huggins理论系统分析了聚偏氟乙烯(PVDF)/聚苯乙烯-马来酸酐(SMA)共混体系的相容性。结果表明,当PVDF/SMA共混质量比>88/12或<20/80 时,体系为完全相容系统。此外,以mPVDF:mSMA=88:12为聚合物(质量分数为16%),二甲基乙酰胺(DMAc)为溶剂,聚乙二醇(PEG)(相对分子量为20000 )为致孔剂和反应物,配制出均相聚合物溶液(50 oC)。根据酯化反应进程,终止反应,视反应体系为铸膜液,采用非溶剂诱导相转化法制备共混超滤膜。随着SMA与PEG之间发生酯化反应和接枝聚合物SMA-g-PEG的合成,溶液粘度从最初的780 mPa•s增至6580 (mPa•s64 h),并出现凝胶化。以反应时间为48 h的铸膜液所制得的超滤膜,其纯水渗透率高达458.6 L/(m2•h•MPa),BSA截留率为96.6%,通量恢复率为78.9%,表现出优异的抗污染性能和分离性能。 |
The compatibility of PVDF/SMA blends was systematically analyzed according to the calculation and prediction of Schneier mixing enthalpy change theory, Flory-Huggins theory . A PVDF/SMA (88/12 wt./wt.)/DMAC homogeneous casting solution system (polymer concentration of 16 wt.%) was prepared, and PEG with molecular weight of 20 kDa (16 wt.%) was added as additive and ragent to control the esterification reaction between SMA and PEG(50 ℃).With the progress of esterification reaction between SMA and PEG and the synthesis of graft polymer SMA-g-PEG, the solution viscosity increased froml 780 mPa•s to 6580 mPa•s (64 h), and gel occurred. According to the esterification reaction process, the reaction is terminated, and the reaction system is considered as casting solution. The PVDF/SMA-g-PEG ultrafiltration membrane prepared from the casting solution with a reaction time of 48 hours has a pure water permeability up to 480.7 L m-2h-1 bar, a BSA retention rate was 96.6%, and a flux recovery rate was 78.9%. It exhibits excellent anti fouling and separation performance. |
基金项目: |
国家自然科学基金项目“面向镁锂高效分的冠醚基聚酰(亚)胺包覆膜系统构建离子选择性分离机制”(项目编号:22278318)。 |
作者简介: |
贾旭莹(1996-),女,河北人,硕士,研究方向为膜制备,E-mail:18132789681@163.com |
参考文献: |
[1] Zhang R N, Liu Y N, He M R, et al. Antifouling membranes for sustainable water purification: strategies and mechanisms[J]. Chem. Soc. Rev., 2016, 45:5888–5924. [2] Yang X., Sun H., Pal A., et al. Biomimetic silicification on membrane surface for highly efficient treatments of both oil-in-water emulsion and protein wastewater[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29982- 29991. [3] Li X., Mo Y., Qing W., et al. Membrane-based technologies for lithium recovery from water lithium resources: A review[J]. Journal of Membrane Science, 2019, 591: 117317. [4] Yao M, Li T J, et al. A review of membrane wettability for the treatment of saline water deploying membrane distillation[J]. Desalination, 2020, 479: 114-312. [5] Gao W, Liang H, Ma J, et al. Membrane fouling control in ultrafiltration technology for drinking water production: a review[J]. Desalination, 2011, 272(1-3): 1-8. [6] M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis,B. J. Marinas and A. M. Mayes, Nature, 2008, 452, 301–310.3[J]. Eliasson, Nature, 2015, 517, 6. [7] Wui S A, et al. Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater efluent[J]. Journal of Membrane Science 2011, (376):196-206. [8] Enfrin M, Lee J, Le-Clech P, et al. kinetic and mechanistic aspects of ultrafiltration membrane fouling by nano- and microplastics[J]. Journal of Membrane Science, 2020, 601: 117-890. [9] Liao Y, Tian M, Wang R, et al. Progress in electrospun polymericnanofibrous membranes for water treatment: fabrication, modification and applications[J]. Prog Polym Sci 2018;77:69–94. [10] Remanan S., Chandra Das N. A unique microfiltration membrane derived from the poly(ethylene-co-methyl acrylate)/Poly(vinylidene fluoride) (EMA/PVDF) biphasic blends and surface modification for antifouling application[J]. Polymer Testing, 2019, 79: 106031 [11] Kanagaraj P., Soyekwo F., Mohamed I.M.A., et al. Towards improved protein anti-fouling and anti-microbial properties of poly (vinylidene fluoride) membranes by blending with lactate salts-based polyurea as surface modifiers[J]. Journal of Colloid and Interface Science, 2020, 567: 379-392. [12] Phillip W. A, Dorin R. M, Werner J. R, et al. Tuning structure and properties of graded triblock terpolymer-based mesoporous and hybrid films[J]. Nano Letters, 2011, 11(7): 2892-2900. [13] Zhou L, Gao k., et al. Constructing dual-defense mechanisms onmembrane surfaces by synergy of PFSA and SiO2 nanoparticles for persistentantifouling performance [J]. Applied Surface Science,2018,440:113–124. [14] Zhao Q, Hou J, Shen J, et al. Long-lasting antibacterial behavior of a novel mixed matrix water purification membrane[J]. Journal of Materials Chemistry A, 2015, 3(36): 18696-18705. [15] A. Rahimpour ,S.S. Madaeni., et al. Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting[J]. Applied Surface Science,2009, (255):7455–7461. [16] Wu X, Kang D D, et al. Microstructure manipulation in PVDF/SMA/MWCNTs ultrafiltration membranes: Effects of hydrogen bonding and crystallization during the membrane formation[J].Separation and Purification Technology,2022,119-523. [17] Schneier B. Polymer compatibility[J], J. Appl. Polym. Sci. 1973, 17:3175-3185. [18] Younas H, Zhou Y, Li X, et al. Fabrication of high flux and fouling resistant membrane: A unique hydrophilic blend of polyvinylidene fluoride/polyethylene glycol/polymethyl methacrylate[J]. Polymer, 2019, 179: 121593. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号