盐湖提锂用退役纳滤膜的污染分析
作者:王金燕,王曼曼,李鸽,王晶,姚之侃,寇瑞强,周志军,张林
单位: 1. 浙江大学 化学工程与生物工程学院,膜与水处理教育部工程中心,杭州 310027; 2.山西浙大新材料与化工研究院,太原 030000 3. 青海启迪清源新材料有限公司,格尔木,816000
关键词: 锂镁分离;纳滤膜;膜污染
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2023,43(5):83-88

摘要:
 纳滤分离技术已在盐湖提锂领域得到了成功的应用。但在锂镁分离运行过程中,纳滤膜不可避免地会发生膜污染,导致膜性能显著下降,膜服役寿命大幅缩短。为此,本文对退役的青海察尔汗盐湖提锂用纳滤膜进行了剖检,表征并分析了纳滤膜表面污染层的形貌结构及其化学组成。结果表明,膜表面以胶状无机污染为主,其中以SiO2胶体污染最为严重,污染层中的主要无机成分还包括Fe2O3与Al2SiO5等,而主要的有机成分则包含蛋白质与多糖。基于对纳滤膜的污染分析,本文进一步提出了盐湖提锂过程中纳滤膜污染的预防措施,为纳滤膜的有效运行提供参考。
 Nanofiltration separation technology has been successfully applied in the field of lithium extraction from the salt-lake. However, during the separation process, membrane fouling occurs inevitably, resulting in decreased membrane performance and shortened membrane lifetime. In this work, the deteriorated nanofiltration membrane applied for the lithium extraction from Qinghai Qarhan Salt Lake was autopsied. The morphologies and compositions of the membrane fouling layer were evaluated. The results showed that the membrane mainly suffered from the inorganic colloidal. SiO2 colloids were the mostly detected foulants. Fe2O3, and Al2SiO5 were the other detected inorganic foulants with high content. The main organic foulants were proteins and polysaccharides. Based on the above results, strategies to extent the lifetime of nanofiltration membranes in lithium extraction from salt-lake process were proposed. 

基金项目:
浙江省“领雁”计划项目(2022C03048),山西浙大新材料与化工研究院研发项目(2022SZ-TD002),国家自然科学基金(U21A20302,22108247),国家重点研发计划项目(2020YFC1909400)

作者简介:
王金燕(1998-),女,浙江杭州人,硕士研究生,研究方向为反渗透膜污染研究

参考文献:
 [1]Lu D, Ma T, Lin S S, et al. Constructing a selective blocked-nanolayer on nanofiltration membrane via surface-charge inversion for promoting Li+ permselectivity over Mg2+[J]. J Membr Sci, 2021, 635(1): 119504.
[2]Zhang T, Zheng W, Wang Q Y, et al. Designed strategies of nanofiltration technology for Mg2+/Li+ separation from salt-lake brine: A comprehensive review[J]. Desalination, 2023, 546(15): 116205.
[3]Xu P, Hong J, Qian X M, et al. Materials for lithium recovery from salt lake brine[J]. J Mater Sci, 2021, 56: 16-63.
[4]李燕, 王敏, 赵有璟, 等. 用于盐湖提锂的聚酰胺复合纳滤膜制备及其性能研究[J]. 盐湖研究, 2023, 31(1): 1-10.
[5]Wang C B, Li Z Y, Chen J X, et al. Zwitterionic functionalized “cage-like” porous organic frameworks for nanofiltration membrane with high efficiency water transport channels and anti-fouling property[J]. J Membr Sci, 2018, 548(15): 194-202.
[6]Wang S Y, Fang L F, Zhu B K, et al. Enhancing the antifouling property of polymeric membrane via surface charge regulation[J]. J Colloid Interface Sci, 2021, 593: 315-322.
[7]Zhang T L, Zhang K, Li J H, et al. Simultaneously enhancing hydrophilicity, chlorine resistance and anti-biofouling of APA-TFC membrane surface by densely grafting quaternary ammonium cations and salicylaldimines[J]. J Membr Sci, 2017, 528(15): 296-302.
[8]张泉, 郭曦, 董文艺, 等. 预处理方式对纳滤工艺性能及膜污染的影响研究[J]. 膜科学与技术, 2014, 34(1): 82-86+90.
[9]Li Y H, Wang S H, Li H Y, et al. Polyamide nanofiltration membranes with rigid–flexible microstructures for high-efficiency Mg2+/Li+ separation[J]. Sep Purif Technol, 2023, 306(1): 122552.
[10]Zhang T, Zheng W J, Wang Q Y, et al. Designed strategies of nanofiltration technology for Mg2+/Li+ separation from salt-lake brine: A comprehensive review[J]. Desalination, 2023, 546(15): 116205.
[11]Lu D, Yao Z K, Jiao L, et al. Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/multivalent ion-selective nanofiltration membrane[J]. Adv Member, 2022, 2: 100032.
[12]Tang C Y, Chong T H, Fane A G. Colloidal interactions and fouling of NF and RO membranes: a review[J]. Adv Colloid Interface Sci, 2011, 164(1): 126-43.
[13]Jiang S X, Li Y N, Ladewig B P. A review of reverse osmosis membrane fouling and control strategies[J]. The Science of the total environment, 2017, 595: 567-583.
[14]Bae Y J, Ryu C K, Jeon J K, et al. The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae[J]. Bioresource Technology, 2011, 102(3): 3512-3520.
[15]Wang S, Hu Y M, He Z X, et al. Study of pyrolytic mechanisms of seaweed based on different components (soluble polysaccharides, proteins, and ash)[J]. J Renewable Sustainable Energy, 2017, 9(2): 023102.
[16]Braileanu A, Zaharescu M, Cri?an D, et al. Kinetics of the decomposition of calcium carbonate in the presence of Bi2O3[J]. Journal of thermal analysis, 1996, 47(2): 569-575.
[17]张军, 赵颂, 郝展, 等. 反渗透膜硅垢形成机理及抗硅垢膜研究进展[J]. 膜科学与技术, 2022, 42(2): 128-137.
[18]Nicholas A M, Tom O, Peter S, et al. Chemistry of silica scale mitigation for RO desalination with particular reference to remote operations[J]. Water Res, 2014, 65(15): 107-133.
[19]Shekhovtsov V V, Skripnikova N K, Vereshchagin V I. Influence of thermal plasma energy on phase transitions of nanodispersed silicon dioxide[J]. Glass Physics and Chemistry, 2022, 48(5): 410-413.
[20]Abderrhmane B, Salah E L. Green synthesis of iron oxide nanoparticles by aqueous leaves extract of mentha pulegium L.: Effect of ferric chloride concentration on the type of product[J]. Materials Letters, 2020, 265(15): 127364.
[21]Jo H S, Kim H, Yoon S Y. Synthesis and characterization of mesoporous aluminum silicate and its adsorption for Pb (II) ions and methylene blue in aqueous solution[J]. Materials, 2022, 15(10): 3562.
[22]Jeong S, Kim S, Kim L H, et al. Foulants analysis of a reverse osmosis membrane used pretreated seawater[J]. J Membr Sci, 2013, 428(1): 434-444.
[23]Adel M, Nada T, Amin S, et al. Characterization of fouling for a full-scale seawater reverse osmosis plant on the Mediterranean sea: membrane autopsy and chemical cleaning efficiency[J]. Groundwater for Sustainable Development, 2022, 16: 100704.
[24]Zheng L B, Yu D W, Wang G, et al. Characteristics and formation mechanism of membrane fouling in a full-scale RO wastewater reclamation process: Membrane autopsy and fouling characterization[J]. J. Membr. Sci. 2018, 563(1): 843-856.
[25]Chon K, Kim S J, Moon J, et al. Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation: An autopsy study of a pilot plant[J]. Water Res. 2012, 46(6): 1803-1816.
[26]Melián-Martel N, Sadhwani J J, Malamis S, et al. Structural and chemical characterization of long-term reverse osmosis membrane fouling in a full scale desalination plant[J]. Desalination, 2012, 305(1): 44-53.
[27]Tang F, Hu H Y, Sun L J, et al. Fouling of reverse osmosis membrane for municipal wastewater reclamation: Autopsy results from a full-scale plant[J]. Desalination, 2014, 349(15), 73-79.
[28]熊福军, 王肖虎, 张许, 等. 探索青海察尔汗盐湖老卤资源梯度开发[J]. 广东化工, 2022, 49(6): 464.
[29]陈军, 钟静, 林森, 等. 铝基吸附剂固定床分离卤水锂资源过程研究[J]. 无机盐工业, 2023, 55(1): 64-73.
[30]Ma L, Zhang C, Lin S, et al. Enhancing antifouling property of reverse osmosis membranes via surface tethered with the aminated cation of ionic liquids[J]. Desalination, 2021, 517(1): 115257.
[31]Pearce G K. The case for UF/MF pretreatment to RO in seawater applications[J]. Desalination, 2007, 203(1-3): 286-295.
[32]Hijnen W A M, Castillo C, Brouwer-Hanzens A H, et al. Quantitative assessment of the efficacy of spiral-wound membrane cleaning procedures to remove biofilms[J]. Water Res, 2012, 19(1): 6369-6381.
[33]Li Y S, Shi L C, Gao X F, et al. Cleaning effects of oxalic acid under ultrasound to the used reverse osmosis membranes with an online cleaning and monitoring system[J]. Desalination, 2016, 390(15): 62-71.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号