pH和温度双响应性的微凝胶复合膜的制备及油水分离性能研究 |
作者:陈富有,赵雅雯,马慧,高从堦,陆叶强,薛立新 |
单位: 1浙江工业大学化工学院膜分离与水科学技术中心,浙江,杭州 310014; 2温州大学化学与材料工程学院,浙江,温州 325035 |
关键词: 刺激响应;微凝胶;油水分离;自清洁 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2023,43(5):106-117 |
摘要: |
在外部能量刺激下具有浸润性智能可切换的刺激响应膜材料在按需油水分离方面备受关注。在此,我们通过向聚偏氟乙烯(PVDF)铸膜液中加入一种具有pH和温度双刺激响应的P-PDA微凝胶,接着采用乙醇作为凝固浴通过相转化的方式制备出了一种具有pH和温度双刺激响应性的微凝胶复合膜(M2),并考察了不同温度和pH对膜表面浸润性能的影响及机理,同时探究了膜的自清洁性能及其对不同类型的油水乳液的分离性能。研究发现,M2膜在空气中表现出高疏水性(147.2°)和超亲油性(0°)。在pH=7时,随着温度的升高,膜的水接触角不断增加,并且在30-35℃区间内观察到明显的变化,水接触角从149.3°上升到153.5°。当膜被pH=13水预处理后,空气中的高疏水性和超亲油性转变为亲水性和水下超疏油性。由于M2膜具有可切换的浸润性,仅在重力驱动下成功实现了对W/O和O/W乳液的有效分离,分离效率均大于98.5%,且具有优异的自清洁性能。 |
Smart switchable stimuli-responsive membrane materials with wettability under external energy stimulation have attracted much attention for on-demand oil-water separation. Here, by adding a P-PDA microgel with pH and temperature dual stimuli responses to polyvinylidene fluoride (PVDF) casting solution, a microgel composite membrane (M2) with dual stimuli responsiveness to pH and temperature was prepared by phase inversion using ethanol as a coagulation bath. The influence and mechanism of different temperature and pH on the wetting properties of the membrane surface were investigated, and the self-cleaning performance of the membrane and its separation performance for different types of oil-water emulsions were explored. The study found that M2 membrane exhibited high hydrophobicity (147.2°) and superoleophilicity (0°) in air. At pH=7, the water contact angle of the membrane increaseed continuously with the increase of temperature, and a significant change was observed in the range of 30-35℃, and the water contact angle increaseed from 149.3° to 153.5°. When the membrane was pretreated with pH=13 water, the high hydrophobicity and superoleophilicity in air were transformed into hydrophilic and under-water superoleophobic. Due to the switchable wettability of M2 membrane, the effective separation of W/O and O/W emulsions were successfully achieved only under gravity drive, with separation efficiencies greater than 98.5% and excellent self-cleaning performance. |
基金项目: |
国家自然科学基金(NSFC-U1809213, NSFC-52203104)和浙江省自然科学基金(LQ21B040002) |
作者简介: |
陈富有(1997-),男,籍贯:江西省赣州市,研究方向为膜科学与技术。E-mail:1549846105@qq.com |
参考文献: |
[1] 刘恩华, 李世鹏, 李士伟, 等. PVDF/PSA管式复合纳滤膜的制备与耐酸碱的研究 [J]. 膜科学与技术, 2022, 42(05):48-57. [2] Fu Y, Guo Z. Natural polysaccharide-based aerogels and their applications in oil–water separations: a review [J]. J Mater Chem A, 2022, 10(15):8129-8158. [3] 陈聪, 杨紫云, 赵博远, 等. 紫外诱导超亲水油水分离膜的构建及其性能研究 [J]. 膜科学与技术, 2022, 42(06):101-109. [4] Zheng W, Huang J, Li S, et al. Advanced materials with special wettability toward intelligent oily wastewater remediation [J]. ACS Appl Mater Interfaces, 2020, 13(1):67-87. [5] Huang Z, Shen L, Lin H, et al. Fabrication of fibrous MXene nanoribbons (MNRs) membrane with efficient performance for oil-water separation [J]. J Membr Sci, 2022, 661:120949. [6] Adetunji A I, Olaniran A O. Treatment of industrial oily wastewater by advanced technologies: a review [J]. Appl Water Sci, 2021, 11(6):98. [7] Yu J, Cao C, Pan Y. Advances of adsorption and filtration techniques in separating highly viscous crude oil/water mixtures [J]. Adv Mater Interfaces, 2021, 8(16):2100061. [8] Gong H, Li W, Zhang X, et al. Effects of droplet dynamic characteristics on the separation performance of a demulsification and dewatering device coupling electric and centrifugal fields [J]. Sep Purif Technol, 2021, 257:117905. [9] Li H, Luo Y, Yu F, et al. In-situ construction of MOFs-based superhydrophobic/superoleophilic coating on filter paper with self-cleaning and antibacterial activity for efficient oil/water separation [J]. Colloids Surf, A, 2021, 625:126976. [10] Yu B, Peng Y, Luo X, et al. Effects of particle wettability and water moisture on separation efficiency and drop size distribution of particle-laden droplets in oil [J]. Colloids Surf, A, 2023, 659:130790. [11] Saththasivam J, Ogunbiyi O, Lawler J, et al. Evaluating dissolved air flotation for oil/water separation using a hybridized coagulant of ferric chloride and chitosan [J]. J Water Process Eng, 2022, 47:102836. [12] 于庆海, 朱家明, 赵倩倩, 等. 陶瓷膜的低成本制备及其油水分离应用研究进展 [J]. 膜科学与技术, 2022, 42(05):164-172. [13] Gao J, Wang J, Xu Q, et al. Regenerated cellulose strongly adhered by a supramolecular adhesive onto the PVDF membrane for a highly efficient oil/water separation [J]. Green Chem, 2021, 23(15):5633-5646. [14] Deng Y, Dai M, Wu Y, et al. High-efficient novel super-wetting HKUST-1 membrane for oil-water separation: Development, characterization and performance [J]. J Cleaner Prod, 2022, 333:130109. [15] Liu Y, Lin Q, Zeng G, et al. Nature-inspired green method decorated MXene-based composite membrane for high-efficiency oil/water separation [J]. Sep Purif Technol, 2022, 283:120218. [16] Li Y, He Y, Zhuang J, et al. An intelligent natural fibrous membrane anchored with ZnO for switchable oil/water separation and water purification [J]. Colloids Surf, A, 2022, 634:128041. [17] Liang Y, Yang E, Kim M, et al. Lotus leaf-like SiO2 nanofiber coating on polyvinylidene fluoride nanofiber membrane for water-in-oil emulsion separation and antifouling enhancement [J]. Chem Eng J, 2023, 452:139710. [18] Zhang Y, Li J, Shen Y, et al. Construction of stable Ti3+-TiO2 photocatalytic membrane for enhanced photoactivity and emulsion separation [J]. J Membr Sci, 2021, 618:118748. [19] Zeng Q, Qiu L, Zhao S, et al. Two-step facile fabrication of a superamphiphilic biomimic membrane with a micro–nano structure for oil–water emulsion separation on-demand [J]. New J Chem, 2022, 46(29):14140-14145. [20] Yao X, Hou X, Qi G, et al. Preparation of superhydrophobic polyimide fibrous membranes with controllable surface structure for high efficient oil-water emulsion and heavy oil separation [J]. J Environ Chem Eng, 2022, 10(3):107470. [21] Sun X, Bai L, Li J, et al. Robust preparation of flexibly super-hydrophobic carbon fiber membrane by electrospinning for efficient oil-water separation in harsh environments [J]. Carbon, 2021, 182:11-22. [22] Mir S, Rahidi A, Naderifar A, et al. A novel and facile preparation of Superhydrophilic/Superoleophobic nanofilter using carbon nitride nanosheet for W/O emulsion separation [J]. Sep Purif Technol, 2022, 284:120279. [23] Yang J, Yin L, Tang H, et al. Polyelectrolyte-fluorosurfactant complex-based meshes with superhydrophilicity and superoleophobicity for oil/water separation [J]. Chem Eng J, 2015, 268:245-250. [24] Qiu L, Sun Y, Guo Z. Designing novel superwetting surfaces for high-efficiency oil–water separation: design principles, opportunities, trends and challenges [J]. J Mater Chem A, 2020, 8(33):16831-16853. [25] Ma Q, Cheng H, Fane A G, et al. Recent development of advanced materials with special wettability for selective oil/water separation [J]. Small, 2016, 12(16):2186-2202. [26] Li J-J, Zhou Y-N, Luo Z-H. Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review [J]. Prog Polym Sci, 2018, 87:1-33. [27] Chen Z, Xie H-Y, Li Y-J, et al. Smart light responsive polypropylene membrane switching reversibly between hydrophobicity and hydrophilicity for oily water separation [J]. J Membr Sci, 2021, 638:119704. [28] Zeng W, Hui H, Liu Z, et al. TPP ionically cross-linked chitosan/PLGA microspheres for the delivery of NGF for peripheral nerve system repair [J]. Carbohydr. Polym, 2021, 258:117684. [29] Liu J, Jiang L, He S, et al. Recent progress in PNIPAM-based multi-responsive actuators: A mini-review [J]. Chem Eng J, 2022, 433:133496. [30] Tang Y, Sun J, Li S, et al. Effect of ethanol in the coagulation bath on the structure and performance of PVDF‐g‐PEGMA/PVDF membrane [J]. J Appl Polym Sci, 2019, 136(17):47380. [31] Ahmad A, Ramli W, Fernando W, et al. Effect of ethanol concentration in water coagulation bath on pore geometry of PVDF membrane for Membrane Gas Absorption application in CO2 removal [J]. Sep Purif Technol, 2012, 88:11-18. [32] Liu H, Zhao X, Jia N, et al. Engineering of thermo-/pH-responsive membranes with enhanced gating coefficients, reversible behaviors and self-cleaning performance through acetic acid boosted microgel assembly [J]. J Mater Chem A, 2018, 6(25):11874-11883. [33] Xu X, Bai B, Wang H, et al. A near-infrared and temperature-responsive pesticide release platform through core–shell polydopamine@ PNIPAm nanocomposites [J]. ACS Appl Mater Interfaces, 2017, 9(7):6424-6432. [34] Chen Y, Lin J, Mersal G A, et al. “Several birds with one stone” strategy of pH/thermoresponsive flame-retardant/photothermal bactericidal oil-absorbing material for recovering complex spilled oil [J]. J Mater Sci Technol, 2022, 128:82-97. [35] Dansawad P, Yang Y, Li X, et al. Smart membranes for oil/water emulsions separation: A review [J]. Adv Membr, 2022, 2:100039. [36] Tang L, Zeng Z, Wang G, et al. Study of oil dewetting ability of superhydrophilic and underwater superoleophobic surfaces from air to water for high-effective self-cleaning surface designing [J]. ACS Appl Mater Interfaces, 2019, 11(20):18865-18875. [37] 吕艺舒, 孟娇, 张旋, 等. 亲水改性聚偏氟乙烯静电纺丝膜及其自重驱动油/水分离性能 [J]. 膜科学与技术, 2022, 42(04):105-111. [38] 袁茹欣, 陈文革, 栗雯绮, 等. 基于油水分离的氧化石墨烯/二氧化硅复合膜的制备与性能研究 [J]. 膜科学与技术, 2022, 42(03):97-105. [39] Guo H, Yang J, Xu T, et al. A robust cotton textile-based material for high-flux oil–water separation [J]. ACS Appl. Mater. Interfaces, 2019, 11(14):13704-13713. [40] Ni T, Kong L, Xie Z, et al. Flux vs. permeability: How to effectively evaluate mass transfer performance of membranes in oil-water separation [J]. J. Water. Process. Eng, 2022, 49:103119. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号