MXene/rGO中空纤维复合膜的构建及气体分离性能 |
作者:包焕忠,乔俊豪,王钦圣,王玉明,曹国强,于庆华,李 嵩,张连宝,靳 昀 |
单位: 1.淄博蓝景膜环保科技有限公司,淄博 255400;2.山东理工大学 化学化工学院,淄博255049;3.山东美陵中联环境工程有限公司,淄博 255400 |
关键词: MXene/rGO;膜分离;层间距;气体分离;渗透性 |
DOI号: |
分类号: TQ028.2+1 |
出版年,卷(期):页码: 2023,43(5):118-126 |
摘要: |
通过聚二烯丙基二甲基氯化铵(PDDA)对rGO表面进行修饰,表面带有正电荷的柔性rGO纳米片插层带有负电的MXene纳米片之间以调控层间距,形成排列良好的交替有序2D-2D复合结构,采用真空辅助抽滤法在Al2O3中空纤维沉积制备中空纤维MXene/rGO复合膜。采用扫描电子显微镜(SEM)对MXene/rGO复合膜进行表面微观形貌分析,通过X 射线衍射仪(XRD)和X 射线衍射光电子能谱仪(XPS)进行层间距、化学晶型分析和元素价态分析,对膜结构和表面的带电性及气体渗透性进行测试。结果表明:表面带有正电荷的rGO作为插层材料,可调控MXene纳米片层间距至3.15Å,介于H2(2.89 Å)和CO2(3.30 Å)分子动力学直径之间,从而提高MXene/rGO复合膜的分离性能。25 oC时,MXene/rGO复合膜的H2渗透性为5.13×10-8 mol/(m2·s·Pa),H2/CO2选择性为125。同时经过200 h的膜稳定性测试,MXene/rGO复合膜表现出优秀的稳定性。 |
MXene/rGO composite membranes were prepared through rGO modified by polyallyl dimethyl ammonium chloride (PDDA) inserted into the MXene nano-sheet with negative charge to inhibit the self-stacking of MXene. Scanning electron microscopy (SEM) was used to analyze the surface morphology of MXene/rGO composite membranes. X-ray diffraction (XRD) and X-ray diffraction photoelectron spectroscopy (XPS) were used to analyze the layer spacing, chemical crystal pattern and valence state of elements. The results show that MXene/rGO can achieve inter-spacing of 3.15 Å through intercalating regulation. Moreover, MXene/rGO composite hollow fiber membranes show excellent H2 permeability of 5.13×10-8 mol/(m2·s·Pa), H2/CO2 selectivity of 125 at 25 oC, and excellent stability over 200 h. |
基金项目: |
国家自然科学基金(21878179);山东省重大科技创新工程项目(2019JZZY020224) |
作者简介: |
包焕忠(1970-),男,吉林省梅河口市人,高级工程师,学士,研究方向为分离膜的研发、应用和制备,E-mail:bhz@mayling.com.cn |
参考文献: |
[1] Edwards P P, Kuznetsov V L, David W I F, et al. Hydrogen and fuel cells: towards a sustainable energy future[J]. Energ Policy, 2008, 36(12): 4356-4362. [2] Vogt C, Monai M, Kramer G J, et al. The renaissance of the Sabatier reaction and its applications on Earth and in space[J]. Nat Catal, 2019, 2(3): 188-197. [3] Turner J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974. [4] Ross J R H. Natural gas reforming and CO2 mitigation[J]. Catal Today, 2005, 100(1-2): 151-158. [5] Jee J G, Kim M B, Lee C H. Pressure swing adsorption processes to purify oxygen using a carbon molecular sieve[J]. Chem Eng Sci, 2005, 60(3): 869-882. [6] Wang J, Zhu J, Zhang Y, et al. Nanoscale tailor-made membranes for precise and rapid molecular sieve separation[J]. Nanoscale, 2017, 9(9): 2942-2957. [7] Ockwig N W, Nenoff T M. Membranes for hydrogen separation[J]. Chem Rev, 2007, 107(10): 4078-4110. [8] Sholl D S, Lively P P. Seven chemical separations to change the world[J]. Nature, 2016,532(435):435-437. [9]丁黎明,郦和生,魏昕,等. 氢气分离膜材料的研究现状[J]. 膜科学与技术,2022,42(02):183-189. [10] Yampolskii Y, Belov N, Alentiev A. Perfluorinated polymers as materials of membranes for gas and vapor separation[J]. J Membr Sci, 2020, 598: 117779. [11] Robeson L M. The upper bound revisited[J]. J Membr Sci, 2008, 320(1-2): 390-400. [12]高蔓彤,王升欢,刘继桥,等. 基膜表面孔隙率对聚酰胺复合纳滤膜性能的影响[J]. 膜科学与技术, 2022, 42(05):64-78. [13] Liu J, Ju X, Tang C, et al. High performance stainless-steel supported Pd membranes with a finger-like and gap structure and its application in NH3 decomposition membrane reactor[J]. Chem Eng J, 2020, 388: 124245. [14] Maneerung T, Hidajat K, Kawi S. Ultra-thin (< 1 μm) internally-coated Pd-Ag alloy hollow fiber membrane with superior thermal stability and durability for high temperature H2 separation[J]. J Membr Sci, 2014, 452: 127-142. [15] Meng X, Song J, Yang N, et al. Ni-BaCe0.95Tb0.05O3−δ cermet membranes for hydrogen permeation [J]. J Membr Sci, 2012, 401: 300-305. [16] Zhang S, Wang S, Jin Y, et al. One stone two birds: Simultaneous realization of partial oxidation of methane to syngas and N2 purification via robust ceramic oxygen-permeable membrane reactors[J]. Chem Eng J, 2021, 419: 129462. [17] Peng Y, Li Y, Ban Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359. [18] Duke M C, Da Costa J C D, Do D D, et al. Hydrothermally robust molecular sieve silica for wet gas separation[J]. Adv Funct Mater, 2006, 16(9): 1215-1220. [19] Liu P, Wu M, Li L, et al. Ideal two-dimensional molecular sieves for gas separation: Metal trihalides MX3 with precise atomic pores[J]. J Membr Sci, 2020, 602: 117786. [20] Elyassi B, Sahimi M, Tsotsis T T. Silicon carbide membranes for gas separation applications[J]. J Membr Sci, 2007, 288(1-2): 290-297. [21] Joshi R K, Carbone P, Wang F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754. [22] Guo A, Ban Y, Yang K, et al. Metal-organic framework-based mixed matrix membranes: Synergetic effect of adsorption and diffusion for CO2/CH4 separation[J]. J Membr Sci, 2018, 562: 76-84. [23] Xu G, Yao J, Wang K, et al. Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel[J]. J Membr Sci, 2011, 385: 187-193. [24] Hamid M R A, Qian Y, Wei R, et al. Polycrystalline metal-organic framework (MOF) membranes for molecular separations: Engineering prospects and challenges[J]. J Membr Sci, 2021, 640: 119802. [24] Zhou S, Wei Y, Zhuang L, et al. Introduction of metal precursors by electrodeposition for the in situ growth of metal-organic framework membranes on porous metal substrates[J]. J Mater Chem A, 2017, 5(5): 1948-1951. [26] Hung T H, Deng X, Lyu Q, et al. Coulombic effect on permeation of CO2 in metal-organic framework membranes[J]. J Membr Sci, 2021, 639: 119742. [27] Li W, Zhang Y, Su P, et al. Metal–organic framework channelled graphene composite membranes for H2/CO2 separation[J]. J Mater Chem A, 2016, 4(48): 18747-18752. [28] Zhou S, Wei Y, Hou J, et al. Self-sacrificial template strategy coupled with smart in situ seeding for highly oriented metal–organic framework layers: from films to membranes[J]. Chem Mater, 2017, 29(17): 7103-7107. [29] Hummers W S, Offeman R E. Preparation of Graphitic Oxide[J]. J Am Chem Soc, 1958, 208:1334-1339. [30] Naguib M, Mochalin V N, Barsoum M W, et al. 25th anniversary article: MXenes: a new family of two‐dimensional materials[J]. Adv Mater, 2014, 26(7): 992-1005. [31] Ding L, Wei Y, Li L, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nat Commun, 2018, 9(1):1-7. [32] Shen J, Liu G, Ji Y, et al. 2D MXene nanofilms with tunable gas transport channels[J]. Adv Funct Mater, 2018, 28(31): 1801511. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号