共价有机框架材料在分离膜制备中的应用研究进展 |
作者:许方依,彭宇,宋君杰,苏保卫 |
单位: 中国海洋大学 化学化工学院, 青岛 266100 |
关键词: 共价有机框架;膜分离;原位构筑 |
DOI号: |
分类号: TQ028 |
出版年,卷(期):页码: 2023,43(5):136-149 |
摘要: |
共价有机框架(Covalent organic frameworks,COFs)是一类具有二维(2D)或三维(3D)结构的多孔晶体材料,近年来因其结构特点独特,在膜分离领域受到广泛关注。COFs材料的主要优点是,它们具有有序排列的孔道结构,且可以通过化学设计来调整其孔隙大小与特征。因此,将COFs材料引入分离膜的制备,有利于实现溶剂的快速传输与精确的分子筛分。本文首先简要介绍了COFs材料的特点及其常见制备方法,然后从COFs材料直接用于制膜、原位反应构筑COFs层和COF膜构筑的新进展这三个方面概述了以COFs材料为基础的膜的研究进展,并侧重介绍了原位反应构筑COFs分离层的方法。最后,说明了COF膜的优势和劣势,以及未来存在的机遇与挑战。 |
Covalent organic frameworks (COFs) are porous crystalline materials with two or three dimensional structures that have gained widely attention with promising applications in membrane separation due to their unique structure. The main advantages of COFs materials are their orderly arranged pore structure, and their pore sizes as well as characteristics that can be adjusted by chemical design. Therefore, the application of COFs materials into the preparation of separation membranes is beneficial for rapid solvent transport and accurate molecular sieving.This paper first introduces the characteristics of COFs materials and the common methods of preparing COFs materials, then reviews the research progress of separation membranes which are based on COFs materials from three aspects: direct usage of COFs nanomaterials for membrane fabrication, in-situ reaction for constructing COFs layer, and new advances in COF membrane construction. Especially, this paper introduced detaily the in-situ reaction to construct the COFs separation layer. In the end, the advantages and disadvantages of COF membranes, as well as the future opportunities and challenges are illustrated. |
基金项目: |
作者简介: |
许方依,女,硕士研究生,研究方向为膜分离技术。E-mail:xfy_ouc@126.com。 |
参考文献: |
[1] LIM S K, GOH K, BAE T-H, et al. Polymer-based membranes for solvent-resistant nanofiltration: A review [J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1653-75. [2] WANG H, WANG W, WANG L, et al. Enhancement of hydrophilicity and the resistance for irreversible fouling of polysulfone (PSF) membrane immobilized with graphene oxide (GO) through chloromethylated and quaternized reaction [J]. Chemical Engineering Journal, 2018, 334: 2068-78. [3] ZHU S, ZHAO S, WANG Z, et al. Improved performance of polyamide thin-film composite nanofiltration membrane by using polyetersulfone/polyaniline membrane as the substrate [J]. Journal of Membrane Science, 2015, 493: 263-74. [4] LANG W-Z, ZHANG X, SHEN J-P, et al. The contrastive study of chemical treatment on the properties of PVDF/PFSA and PVDF/PVP ultrafiltration membranes [J]. Desalination, 2014, 341: 72-82. [5] SONG C, WANG T, QIU Y, et al. Effect of carbonization atmosphere on the structure changes of PAN carbon membranes [J]. Journal of Porous Materials, 2008, 16(2): 197-203. [6] SORRIBAS S, GORGOJO P, TELLEZ C, et al. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration [J]. J Am Chem Soc, 2013, 135(40): 15201-8. [7] THIERMEYER Y, BLUMENSCHEIN S, SKIBOROWSKI M. Fundamental insights into the rejection behavior of polyimide-based OSN membranes [J]. Separation and Purification Technology, 2021, 265: 118492. [8] YUAN S, LI X, ZHU J, et al. Covalent organic frameworks for membrane separation [J]. Chem Soc Rev, 2019, 48(10): 2665-81. [9] ADRIEN P. COˆTE´ O M Y. Porous, Crystalline, Covalent Organic Frameworks [J]. Science, 2005, 310(5751): 1166-70. [10] HE G, ZHANG R, JIANG Z. Engineering Covalent Organic Framework Membranes [J]. Accounts of Materials Research, 2021, 2(8): 630-43. [11] STEGBAUER L, SCHWINGHAMMER K, LOTSCH B V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production [J]. Chem Sci, 2014, 5(7): 2789-93. [12] KANDAMBETH S, MALLICK A, LUKOSE B, et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route [J]. J Am Chem Soc, 2012, 134(48): 19524-7. [13] EHRENTRAUT D, SATO H, KAGAMITANI Y, et al. Solvothermal growth of ZnO [J]. Progress in Crystal Growth and Characterization of Materials, 2006, 52(4): 280-335. [14] SEGURA J L, MANCHENO M J, ZAMORA F. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications [J]. Chem Soc Rev, 2016, 45(20): 5635-71. [15] BISWAL B P, CHANDRA S, KANDAMBETH S, et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks [J]. J Am Chem Soc, 2013, 135(14): 5328-31. [16] LI Y, CHEN W, XING G, et al. New synthetic strategies toward covalent organic frameworks [J]. Chem Soc Rev, 2020, 49(10): 2852-68. [17] PANG Z F, XU S Q, ZHOU T Y, et al. Construction of Covalent Organic Frameworks Bearing Three Different Kinds of Pores through the Heterostructural Mixed Linker Strategy [J]. J Am Chem Soc, 2016, 138(14): 4710-3. [18] DECHNIK J, GASCON J, DOONAN C J, et al. Mixed-Matrix Membranes [J]. Angew Chem Int Ed Engl, 2017, 56(32): 9292-310. [19] ZHAO D L, JAPIP S, ZHANG Y, et al. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review [J]. Water Research, 2020, 173: 115557. [20] MURAT G. SIIER N B, LEVENT YILMAZ. Gas permeation characteristics of polymer-zeolite mixed matrix membranes [J]. Journal of Membrane Science, 1994, 91: 77-86. [21] ZHANG Y, MA L, LV Y, et al. Facile manufacture of COF-based mixed matrix membranes for efficient CO2 separation [J]. Chemical Engineering Journal, 2022, 430: 133001. [22] QUAN X, XU X, YAN B. Facile fabrication of Tb(3+)-functionalized COF mixed-matrix membrane as a highly sensitive platform for the sequential detection of oxolinic acid and nitrobenzene [J]. J Hazard Mater, 2022, 427: 127869. [23] XIN Q, ZHANG X, SHAO W, et al. COF-based MMMs with light-responsive properties generating unexpected surface segregation for efficient SO2/N2 separation [J]. Journal of Membrane Science, 2023, 665: 121109. [24] DAI G, ZHANG Q, XIONG S, et al. Building interfacial compatible PIM-1-based mixed-matrix membranes with β-ketoenamine-linked COF fillers for effective CO2/N2 separation [J]. Journal of Membrane Science, 2023, 676: 121561. [25] BUDD P, MSAYIB K, TATTERSHALL C, et al. Gas separation membranes from polymers of intrinsic microporosity [J]. Journal of Membrane Science, 2005, 251(1-2): 263-9. [26] JEONG B-H, HOEK E M V, YAN Y, et al. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes [J]. Journal of Membrane Science, 2007, 294(1-2): 1-7. [27] LI C, LI S, TIAN L, et al. Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN) [J]. Journal of Membrane Science, 2019, 572: 520-31. [28] WANG C, LI Z, CHEN J, et al. Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination [J]. Journal of Membrane Science, 2017, 523: 273-81. [29] SANTANU KARAN, ZHIWEI JIANG, LIVINGSTON A G. Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation [J]. Science, 2015, 348(6241): 1347-51. [30] SONG X, ZHANG Y, ABDEL-GHAFAR H M, et al. Polyamide membrane with an ultrathin GO interlayer on macroporous substrate for minimizing internal concentration polarization in forward osmosis [J]. Chemical Engineering Journal, 2021, 412: 128607. [31] LI S, DU S, LIU S, et al. Ultra-smooth and ultra-thin polyamide thin film nanocomposite membranes incorporated with functionalized MoS2 nanosheets for high performance organic solvent nanofiltration [J]. Separation and Purification Technology, 2022, 291: 120937. [32] WU M, YUAN J, WU H, et al. Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability [J]. Journal of Membrane Science, 2019, 576: 131-41. [33] YANG Z, SUN P F, LI X, et al. A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications [J]. Environ Sci Technol, 2020, 54(24): 15563-83. [34] DAI R, LI J, WANG Z. Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: A review [J]. Adv Colloid Interface Sci, 2020, 282: 102204. [35] HAN S, YOU W, LV S, et al. Ionic liquid modified COF nanosheet interlayered polyamide membranes for elevated nanofiltration performance [J]. Desalination, 2023, 548: 116300. [36] ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide membranes [J]. Nat Nanotechnol, 2017, 12(6): 546-50. [37] LI G, ZHANG K, TSURU T. Two-Dimensional Covalent Organic Framework (COF) Membranes Fabricated via the Assembly of Exfoliated COF Nanosheets [J]. ACS Appl Mater Interfaces, 2017, 9(10): 8433-6. [38] LI Z, GUO J, WAN Y, et al. Combining metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs): Emerging opportunities for new materials and applications [J]. Nano Research, 2021, 15(4): 3514-32. [39] HU Y, WEI J, LIANG Y, et al. Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes [J]. Angew Chem Int Ed Engl, 2016, 55(6): 2048-52. [40] KHAN N A, YUAN J, WU H, et al. Mixed Nanosheet Membranes Assembled from Chemically Grafted Graphene Oxide and Covalent Organic Frameworks for Ultra-high Water Flux [J]. ACS Appl Mater Interfaces, 2019, 11(32): 28978-86. [41] GONG X, ZHANG G, DONG H, et al. Self-assembled hierarchical heterogeneous MXene/COF membranes for efficient dye separations [J]. Journal of Membrane Science, 2022, 657: 120667. [42] YANG H, YANG L, WANG H, et al. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations [J]. Nature communications, 2019, 10(1): 2101. [43] WANG M, ZHANG P, LIANG X, et al. Ultrafast seawater desalination with covalent organic framework membranes [J]. Nature Sustainability, 2022, 5(6): 518-26. [44] MARCHETTI P, JIMENEZ SOLOMON M F, SZEKELY G, et al. Molecular separation with organic solvent nanofiltration: a critical review [J]. Chem Rev, 2014, 114(21): 10735-806. [45] FU W, ZHANG W, CHEN H, et al. A high-flux organic solvent nanofiltration membrane with binaphthol-based rigid-flexible microporous structures [J]. Journal of Materials Chemistry A, 2021, 9(11): 7180-9. [46] HUANG T, MOOSA B A, HOANG P, et al. Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration [J]. Nat Commun, 2020, 11(1): 5882. [47] KANDAMBETH S, BISWAL B P, CHAUDHARI H D, et al. Selective Molecular Sieving in Self-Standing Porous Covalent-Organic-Framework Membranes [J]. Adv Mater, 2017, 29(2): 1603945. [48] DEY K, KUNJATTU H S, CHAHANDE A M, et al. Nanoparticle Size-Fractionation through Self-Standing Porous Covalent Organic Framework Films [J]. Angew Chem Int Ed Engl, 2020, 59(3): 1161-5. [49] SONG Y, FAN J-B, WANG S. Recent progress in interfacial polymerization [J]. Materials Chemistry Frontiers, 2017, 1(6): 1028-40. [50] DEY K, PAL M, ROUT K C, et al. Selective Molecular Separation by Interfacially Crystallized Covalent Organic Framework Thin Films [J]. J Am Chem Soc, 2017, 139(37): 13083-91. [51] LU Y, LIU W, LIU J, et al. A review on 2D porous organic polymers for membrane-based separations: Processing and engineering of transport channels [J]. Advanced Membranes, 2021, 1: 100014. [52] WANG R, SHI X, XIAO A, et al. Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations [J]. Journal of Membrane Science, 2018, 566: 197-204. [53] LEI R, ZHA Z, HAO Z, et al. Ultrathin and high-performance covalent organic frameworks composite membranes generated by oligomer triggered interfacial polymerization [J]. Journal of Membrane Science, 2022, 650: 120431. [54] FANG Y-X, LIN Y-F, XU Z-L, et al. A novel clover-like COFs membrane fabricated via one-step interfacial polymerization for dye/salt separation [J]. Journal of Membrane Science, 2023, 673: 121470. [55] TSOUKALA A, PEEVA L, LIVINGSTON A G, et al. Separation of Reaction Product and Palladium Catalyst after a Heck Coupling Reaction by means of Organic Solvent Nanofiltration [J]. ChemSusChem, 2012, 5(1): 188-93. [56] YAO M S, LV X J, FU Z H, et al. Layer-by-Layer Assembled Conductive Metal-Organic Framework Nanofilms for Room-Temperature Chemiresistive Sensing [J]. Angew Chem Int Ed Engl, 2017, 56(52): 16510-4. [57] SHI X, WANG R, XIAO A, et al. Layer-by-Layer Synthesis of Covalent Organic Frameworks on Porous Substrates for Fast Molecular Separations [J]. ACS Applied Nano Materials, 2018, 1(11): 6320-6. [58] HAO S, JIANG L, LI Y, et al. Facile preparation of COF composite membranes for nanofiltration by stoichiometric spraying layer-by-layer self-assembly [J]. Chem Commun (Camb), 2020, 56(3): 419-22. [59] NI L, CHEN K, XIE J, et al. Synchronizing formation of polyamide with covalent organic frameworks towards thin film nanocomposite membrane with enhanced nanofiltration performance [J]. Journal of Membrane Science, 2022, 646: 120253. [60] ZHAO S, ZHA Z, MAO C, et al. In-situ fabricated covalent organic frameworks-polyamide hybrid membrane for highly efficient molecular separation [J]. Journal of Membrane Science, 2022, 653: 120544. [61] YANG C, LI S, LV X, et al. Effectively regulating interfacial polymerization process via in-situ constructed 2D COFs interlayer for fabricating organic solvent nanofiltration membranes [J]. Journal of Membrane Science, 2021, 637: 119618. [62] LI S, YIN Y, LIU S, et al. Interlayered thin-film nanocomposite membrane with synergetic effect of COFs interlayer and GQDs incorporation for organic solvent nanofiltration [J]. Journal of Membrane Science, 2022, 662: 120930. [63] LI S, YANG F, LIU S, et al. Effective regulating interfacial polymerization process of OSN membrane via in-situ constructed nano-porous interlayer of 2D TpHz covalent organic frameworks [J]. Journal of Membrane Science, 2023, 665: 112101. [64] LAI W, SHAN L, BAI J, et al. Highly permeable and acid-resistant nanofiltration membrane fabricated by in-situ interlaced stacking of COF and polysulfonamide films [J]. Chemical Engineering Journal, 2022, 450: 137965. [65] JIANG Y, LI S, SU J, et al. Two dimensional COFs as ultra-thin interlayer to build TFN hollow fiber nanofiltration membrane for desalination and heavy metal wastewater treatment [J]. Journal of Membrane Science, 2021, 635: 119523. [66] QI H, PENG Y, LV X, et al. Synergetic effects of COFs interlayer regulation and surface modification on thin-film nanocomposite reverse osmosis membrane with high performance [J]. Desalination, 2023, 548: 116265. [67] YUAN J, YOU X, KHAN N A, et al. Photo-tailored heterocrystalline covalent organic framework membranes for organics separation [J]. Nat Commun, 2022, 13(1): 3826. [68] ZHANG W, ZHANG L, ZHAO H, et al. A two-dimensional cationic covalent organic framework membrane for selective molecular sieving [J]. Journal of Materials Chemistry A, 2018, 6(27): 13331-9. [69] HE X, YANG Y, WU H, et al. De Novo Design of Covalent Organic Framework Membranes toward Ultrafast Anion Transport [J]. Adv Mater, 2020, 32(36): e2001284. [70] SHINDE D B, SHENG G, LI X, et al. Crystalline 2D Covalent Organic Framework Membranes for High-Flux Organic Solvent Nanofiltration [J]. J Am Chem Soc, 2018, 140(43): 14342-9. [71] LI Y, WU Q, GUO X, et al. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving [J]. Nat Commun, 2020, 11(1): 599. [72] WALLER P J, GANDARA F, YAGHI O M. Chemistry of Covalent Organic Frameworks [J]. Acc Chem Res, 2015, 48(12): 3053-63. [73] MAO C, ZHAO S, HE P, et al. Covalent organic framework membranes with limited channels filling through in-situ grown polyaniline for efficient dye nanofiltration [J]. Chemical Engineering Journal, 2021, 414: 128929. [74] WANG H, ZHAI Y, LI Y, et al. Covalent organic framework membranes for efficient separation of monovalent cations [J]. Nat Commun, 2022, 13(1): 7123. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号