多孔配位有机硅在膜分离领域中的应用 |
作者:谭先先,余亮,冯霄,王博 |
单位: 北京理工大学,北京100081 |
关键词: 配位单元;有机硅;膜分离技术 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2023,43(5):159-167 |
摘要: |
多孔配位有机硅材料是一类兼具Si-O-Si网络骨架和配位单元的复合材料,由于具有较高的孔隙率、孔径和孔分布易调节及孔道环境易修饰等优点,使其在重金属吸附和检测、自修复材料和膜分离技术等领域展现出了广阔的应用前景。本文主要介绍多孔配位有机硅材料的分类、制备方法及其在膜分离技术领域的应用研究进展。 |
Porous coordinated organosilica is a class of composite materials with both Si-O-Si amphomous network and coordination unit. Owing to their outstanding properties, such as high-level porosity, adjustable pore size and pore size distribution, and the tailor-made chemistry of pore walls, porous coordinated organosilica has demonstrated a broad range of applications in adsorption and detection of heavy metals, self-healing materials and membrane separation. This review mainly introduces the classification and preparation approaches of porous coordinated organosilica and pays a special attention in the research progress of their pioneer applications in membrane separation. |
基金项目: |
国家自然科学基金(21971017,22171022) |
作者简介: |
谭先先(1999-),女,广西贵港人,主要研究方向:E-mail:3120201296@bit.edu.cn |
参考文献: |
[1] 王湛, 王志, 高学理, 等. 膜分离技术基础[M]//北京: 化学工业出版社, 2000:1-6. [2] Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. J. Membr. Sci., 1991, 62(2):165-185. [3] Robeson L M. The upper boud revisited[J]. J. Membr. Sci., 2008, 320(1-2):390-400. [4] Kanezashi M, Yada K, Yoshioka T, et al. Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability[J]. J. Am. Chem. Soc., 2009, 131(2):414-415. [5] Ren X X, Tsuru T. Organosilica-based membranes in gas and liquid-phase separation[J]. Membranes, 2019, 9(9):107-131. [6] 廖明佳, 朱 韵, 任秀秀, 等. 微孔桥联有机硅杂化膜的制备方法及影响因素研究进展[J]. 膜科学与技术, 2021, 41(2): 147-156. [7] Guo M, Kanezashi M, Nagasawa H, et al. Pore subnano-environment engineering of organosilica membranes for highly selective propylene/propane separation[J]. J. Membr. Sci., 2020, 603:117999. [8] Gong G H, Nagasawa H, Kanezashi M, et al. Facile and scalable flow-induced deposition of organosilica on porous polymer supports for reverse osmosis desalination[J]. ACS Appl. Mater. Interfaces, 2018, 10(16):14070-14078. [9] Zhang H, Wen J, Shao Q, et al. Fabrication of La/Y-codoped microporous organosilica membranes for high-performance pervaporation desalination[J]. J. Membr. Sci., 2019, 584:353-363. [10] Kanezashi M, Yoneda Y, Nagasawa H, et al. Gas permeation properties for organosilica membranes with different Si/C ratios and evaluation of microporous structures[J]. AIChE J., 2017, 63(10):4491-4498. [11] Guo M, Kanezashi M, Nagasawa H, et al. Amino-decorated organosilica membranes for highly permeable CO2 capture[J]. J. Membr. Sci., 2020, 611:118328. [12] Kanezashi M, Miyauchi S, Nagasawa H, et al. Gas permeation properties through Al-doped organosilica membranes with controlled network size[J]. J. Membr. Sci., 2014, 466:246-252. [13] Yu L, Kanezashi M, Hiroki Nagasawa, et al. Tailoring ultramicroporosity to maximize CO2 transport within pyrimidine-bridged organosilica membranes[J]. ACS Appl. Mater. Interfaces, 2019, 11:7164-7173. [14] Batten S R, Champness N R, Chen X, et al. Terminology of metal–organic frameworks and coordination polymers[J]. Pure Appl. Chem., 2013, 85(8):1715-1724. [15] O’Keeffe M, Yaghi O M. Deconstructing the crystal structures of metal organic frameworks and related materials into their underlying nets[J]. Chem. Rev., 2012, 112(2):675-702. [16] Schoedel A, Li M, Li D, et al. Structures of metal−organic frameworks with rod secondary building units[J]. Chem. Rev., 2016, 116(19):12466-12535. [17] 钱彬彬,李娜,常泽,等. 多孔配位聚合物:发展历程及研究进展[J]. 中国科学:化学, 2019, 49(11): 1361-1376. [18] Czaja A U, Trukhan N, Müller U. Industrial applications of metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38(5):1284-1293. [19] Kalaj M, Bentz K C, Ayala S Jr, et al. MOF-Polymer hybrid materials: from simple composites to tailored architectures[J]. Chem. Rev., 2020, 120(16):8267-8302. [20] Kitao T, Zhang Y, Kitagawa S, et al. Hybridization of MOFs and polymers[J]. Chem. Soc. Rev., 2017, 46(11):3108-3133. [21] 周玲玲, 牛照栋, 汤立红, 等. MOFs有机-无机杂化膜的制备及应用研究进展[J]. 膜科学与技术, 2018, 38(6):111-120. [22] El-Nahhal I M, El-Ashgar N M. A review on polysiloxane-immobilized ligand systems: Synthesis, characterization and applications[J]. J. Organomet. Chem., 2007, 692(14):2861-2886. [23] Gao M, Han S, Hu Y, et al. Enhanced fluorescence in tetraylnitrilomethylidyne-hexaphenyl derivative-functionalized periodic mesoporous organosilicas for sensitive detection of copper(II)[J]. J. Phys. Chem. C, 2017, 120(17):9299-9307. [24] 项雪莲. 有机硅高分子与金属配合物的合成及发光性能的研究[D]. 山东:山东大学, 2012. [25] Li C, Wang C, Keplinger C, et al. A highly stretchable autonomous self-healing elastomer[J]. Nat. Chem., 2016, 8(6):618-624. [26] 王琳琳, 李磊, 冯圣玉. 有机硅超分子材料研究进展[J]. 高等学校化学学报, 2021, 42(7):2111-2122. [27] Rao Y, Chortos A, Pfattner R, et al. Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination[J]. J Am. Chem. Soc., 2016, 138(18):6020-6027. [28] Anggarini U, Tsuru T, Kanezashi M, et al. Metal-induced microporous aminosilica creates a highly permeable gas-separation membrane[J]. Mater. Chem. Front., 2021, 5(7):3029-3042. [29] Anggarini U, Yu L, Nagasawa H, et al. Microporous nickel-coordinated aminosilica membranes for improved pervaporation performance of methanol/toluene separation[J]. ACS Appl. Mater. Interfaces, 2021, 13(19):23247-23259. [30] Mendezvivar J, Mendoza-Serna R, Bosch P, et al. Influence of isoeugenol as a chelating agent on the structure of Si–Ti polymeric systems obtained from alkoxides[J]. J. Non-Cryst. Solids, 1999, 248(2-3):147-158. [31] 陈雨雁. 聚倍半硅氧烷/金属-有机框架杂化材料的制备与性能研究[D]. 山东:山东大学, 2020. [32] 赵亚云. 基于有机硅超薄管膜的制备及其气体分离性能研究[D]. 浙江:中国科学院大学(中国科学院宁波材料技术与工程研究所), 2020. [33] Kong C, Du H, Chen L, et al. Nanoscale MOF/organosilica membranes on tubular ceramic substrates for highly selective gas separation[J]. Energy Environ. Sci., 2017, 10:1812-1819. [34] 严浩军, 张 帅, 杜红斌, 等. 一种ZIF-8/有机硅杂化膜的制备及性能研究[J]. 膜科学与技术, 2019, 39(1):9-15. [35] He D, Zhang H, Ren Y,et al. Fabrication of a novel microporous membrane based on ZIF-7 doped 1,2-bis(triethoxysilyl)ethane for H2/CO2 separation [J]. Microporous Mesoporous Mater., 2022, 331:111674. [36] Fukumoto T, Yoshioka T, Nagasawa, H, et al. Development and gas permeation properties of microporous amorphous TiO2–ZrO2–organic composite membranes using chelating ligands[J]. J. Membr. Sci., 2014, 461:96-105. [37] Lawal S, Kanezashi M, Nagasawa H, et al. Development of an acetylacetonate-modified silica-zirconia composite membrane applicable to gas separation[J]. J. Membr. Sci., 2020, 599(3):117844. [38] Besselink R, Qureshi H F, Winnubst L, et al. A novel malonamide bridged silsesquioxane precursor for enhanced dispersion of transition metal ions in hybrid silica membranes[J]. Microporous Mesoporous Mater., 2015, 214:45-53. [39] Anggarini U, Yu L, Nagasawa H, et al. Metal-induced aminosilica rigidity improves highly permeable microporous membranes via different types of pendant precursors[J]. ACS Appl. Mater. Interfaces, 2022, 14(37):42692-42704. [40] Anggarini U, Nagasawa H, Kanezashi M, et al. Structural two-phase evolution of aminosilica-based silver-coordinated membranes for increased hydrogen separation[J]. J. Membr. Sci.,2022, 642:119962. [41] 侯影飞, 许杨, 李海平, 等. 渗透汽化膜改性技术研究进展[J]. 膜科学与技术, 2018, 38(01):136-142. [42] 周宗尧, 张朔, 王宁, 等. 有机溶剂分离膜技术研究进展[J]. 膜科学与技术, 2018, 38(01):104-113. [43] 徐荣, 刘倩, 朱春晖, 等. 一种UIO-66-NH2掺杂的有机硅高盐废水处理膜及其制备方法[P]. 江苏省: CN111298665B, 2022-02-11. [44] 朱春晖, 徐荣, 任秀秀, 等. ZIF-8-NH2/有机硅杂化膜的制备及渗透汽化脱盐性能研究[J]. 无机材料学报, 2020, 35(11):1239-1246. [45] Anggarini U, Yu L, Nagasawa H, et al. Structural transformation of the nickel coordination-induced subnanoporosity of aminosilica membranes for methanol-selective, high-flux pervaporation[J]. J. Membr. Sci., 2022, 656:120613. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号