高温气体除尘陶瓷纤维膜的研究进展 |
作者:倪诗莹,公衍民,邹 栋,仲兆祥,邢卫红 |
单位: 1南京工业大学环境科学与工程学院, 材料化学工程国家重点实验室, 南京 211816) (2南京工业大学化工学院, 材料化学工程国家重点实验室, 南京 211816 |
关键词: 高温气体除尘; 陶瓷纤维膜; 制备技术 |
DOI号: |
分类号: TQ174 |
出版年,卷(期):页码: 2023,43(5):168-178 |
摘要: |
能源、冶金、化工等工业生产中会排放大量高温含尘烟气,而传统高温烟气处理技术存在热能损失、工艺复杂、成本较高等问题。陶瓷纤维膜凭借其孔隙率高、透气性好、耐高温、耐腐蚀等优点,成为高温气体除尘领域的关键材料。低成本开发高强度陶瓷纤维膜成为重点研究方向。本文重点整理了陶瓷纤维膜制备技术(真空抽滤成型、纤维缠绕技术、纺丝技术及模具成型技术)的研究进展,介绍了陶瓷纤维膜除尘机理及性能,并对其发展前景做了分析和研讨。 |
In energy, metallurgy, chemical industry and other industrial production, a large amount of high-temperature dust-containing flue gas will be emitted, while traditional high-temperature flue gas treatment technology has many problems, such as heat energy loss, complex process and high cost. Ceramic fiber membrane has become a key material in the field of high temperature gas dust removal due to its advantages of high porosity, good air permeability, high temperature resistance and corrosion resistance. The low-cost development of high-strength ceramic fiber membranes has become a key research direction. This paper focuses on the research progress of ceramic fiber membrane preparation technology (vacuum filtration molding, fiber winding technology, spinning technology and mold forming technology), introduces the dust removal mechanism and performance of ceramic fiber membrane, and analyzes its development prospects. |
基金项目: |
国家重点研发计划(2021YFB3801302, 2022YFC3900300); 国家自然科学基金(22208145); 江苏省自然科学基金(No. K20220350); 江苏省高校自然科学基金面上项目(22KJB530002); 江苏省研究生科研与实践创新计划项目(). |
作者简介: |
倪诗莹(1999- ), 女, 浙江杭州人, 硕士, 从事陶瓷膜分离材料的制备与应用. |
参考文献: |
[1] Chen Y-S, Lin J-Y and Chyou Y-P. Performance of hot-gas cleanup technology for clean coal processing[J]. Fuel, 2021, 294: 120539. [2] Song X, Jian B and Jin J. Preparation of porous ceramic membrane for gas-solid separation[J]. Ceramics International, 2018, 44(16): 20361-20366. [3] Tan Z, Niu G, Qi Q, et al. Ultralow Emission of Dust, SOx, HCl, and NOx Using a Ceramic Catalytic Filter Tube[J]. Energy & Fuels, 2020, 34(4): 4173-4182. [4] Hime N J, Marks G B and Cowie C T. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources[J]. International Journal of Environmental Research and Public Health, 2018, 15(6): 1206-1230. [5] Fushimi C, Yato K, Sakai M, et al. Recent progress in efficient gas–solid cyclone separators with a high solids Loading for large-scale fluidized beds[J]. Powder and Particle, 2019, 38: 2021001. [6] Kanojiya M T, Mandavgade N, Kalbande V, et al. Design and fabrication of cyclone dust collector for industrial Application[J]. Materials Today: Proceedings, 2021, (49): 378-382. [7] Liu X, Shen H and Nie X. Study on the filtration performance of the baghouse filters for ultra-low emission as a function of filter pore size and fiber diameter[J]. International Journal of Environmental Research and Public Health, 2019, 16(2): 247. [8] Molchanov O, Krpec K and Horak J. Electrostatic precipitation as a method to control the emissions of particulate matter from small-scale combustion units[J]. Journal of Cleaner Production, 2020, 246: 119022. [9] Wang X. Effects of corona wire distribution on characteristics of electrostatic precipitator[J]. Powder Technology, 2020, 366: 36-42. [10] 姬忠礼, 栾鑫, 苗林丰. 高温气体过滤技术及装备发展概况[J]. 化工进展, 2020, 39(06): 2304-2311. [11] Byeon S H, Lee B K and Mohan B R. Removal of ammonia and particulate matter using a modified turbulent wet scrubbing system[J]. Separation and Purification Technology, 2012, 98: 221-229. [12] Yingjian D and Huiping Y. Research of the Dust Removal Technology with Multiphase Flow Water Mist[J]. Research Journal of Applied Sciences, Engineering and Technology, 2013, 6(8): 1504-1507. [13] 薛友祥, 孟宪谦, 李宪景, 等. 热气体净化用的高温陶瓷过滤材料[J]. 现代技术陶瓷, 2005(03): 18-21. [14] Withers C J, West A A, Twigg A N, et al. Improvements in the performance of ceramic media for filtration of hot gases[J]. Filtration & Separation, 1990, 27(1): 32-37. [15] Dong L A, Peng L B, Xl B, et al. A novel approach to prepare high strength and high porosity reticulated porous ceramics by in-situ synthesis of mullite whiskers[J]. Ceramics International, 2021, 47(10): 14561-14568. [16] Yang M, Luo X, Yi J, et al. A novel way to fabricate fibrous mullite ceramic using sol-gel vacuum impregnation[J]. Ceramics International, 2018, 44(11): 12664-12669. [17] Zang W, Feng G, Liu J, et al. Lightweight alumina based fibrous ceramics with different high temperature binder[J]. Ceramics International, 2016, 42(8): 10310-10316. [18] Miao L, Wu X, Ji Z, et al. Effects of heat-treatment conditions in the preparation of aluminum silicate fiber-based ceramic filter element for hot-gas filtration[J]. Ceramics International, 2020, 46(11): 18193-18199. [19] Dong X, Chen Z, Guo A, et al. Mechanical and interfacial behavior of single mullite fiber and mullite fiber-based porous ceramics[J]. Ceramics International, 2018, 44(12): 14446-14456. [20] Jia T, Chen H, Dong X, et al. Preparation of homogeneous mullite fibrous porous ceramics consolidated by propylene oxide[J]. Ceramics International, 2019, 45(2): 2474-2482. [21] Yang Y, Fu W, Chen X, et al. Fabrication of homogeneous mullite-based fiber porous ceramics with high strength and porosity[J]. Journal of the European Ceramic Society, 2022, 42(15): 7219-7227. [22] Li J, Wang W, Du H, et al. Kaolin/silica/mullite fiber multilayer membranes for high-efficiency gas filtration[J]. Ceramics International, 2020, 46(18): 28742-28748. [23] Wang W, Hu X, Li L, et al. Silica/mullite fiber composite membrane with double-layer structure for efficient sub-micrometer dust removal[J]. Ceramics International, 2019, 45(6): 6723-6729. [24] GENNRICH TJ. High temperature ceramic fiber filter bags [C] // CLIFT R, SEVILLE JPK. Gas Cleaning at High Temperatures. The Netherlands, Dordrecht: Springer, 1993: 307-320. [25] Alvin M A. Advanced second generation ceramic candle filters[R]. DE-AC21-94MC31147, Pittsburgh: U.S. Department of Energy National Energy Technology Laboratory, 2002. [26] 薛友祥, 王响, 张久美, 等. 连续纤维增强陶瓷纤维过滤材料制备工艺研究[J]. 现代技术陶瓷, 2019, 40(6): 432-440. [27] 薛友祥, 李福功, 唐钰栋, 等. 高温陶瓷纤维过滤材料[J]. 现代技术陶瓷, 2020, 41(5): 281-293. 现代技术陶瓷, 41(5): 13. [28] Thavasi V, Singh G and Ramakrishna S. Electrospun nanofibers in energy and environmental applications[J]. Energy & Environmental Science, 2008, 1(2): 205-221. [29] 胡敏, 仲兆祥, 邢卫红. 纳米纤维膜在空气净化中的应用研究进展[J]. 化工进展, 2018, 37(04): 1305-1313. [30] Liu H, Wu N, Zhang X, et al. Research progress on electrospun high-strength micro/nano ceramic fibers[J]. Ceramics International, 2022, 48(23): 34169-34183. [31] Yuan K, Li H, Jin X, et al. Electrospun flexible calcium zirconate fiber membrane with excellent thermal stability and alkali resistance[J]. Ceramics International, 2022, 48(9): 12408-12414. [32] 张景. 柔性无机纳米纤维的成形机理及其耐高温过滤上的应用[D]. 郑州: 中原工学院, 2020. [33] Jia C, Liu Y, Li L, et al. A Foldable All-Ceramic Air Filter Paper with High Efficiency and High-Temperature Resistance[J]. Nano Letters, 2020, 20(7): 4993-5000. [34] Wu N, Wang B and Wang Y. Enhanced mechanical properties of amorphous SiOC nanofibrous membrane through in situ embedding nanoparticles[J]. Journal of the American Ceramic Society, 2018, 101(10): 4763-4772. [35] Mao X, Si Y, Chen Y, et al. Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration[J]. Rsc Advances, 2012, 2(32): 12216-12223. [36] Zhu Q, Tang X, Feng S, et al. ZIF-8@SiO2 composite nanofiber membrane with bioinspired spider web-like structure for efficient air pollution control[J]. Journal of Membrane Science, 2019, 581: 252-261. [37] 李维亮. 高温烟气过滤用多孔陶瓷材料的研制[D]. 南京: 南京工业大学, 2017. [38] Zou D, Gong Y, Liu Y, et al. One-step co-sintering of hierarchical mullite whisker/fiber membranes with gradient pore structures for effective filtration of dust-laden gas[J]. Journal of Membrane Science, 2023, 668: 121143. [39] Cuo Z, Liu H, Zhao F, et al. Highly porous fibrous mullite ceramic membrane with interconnected pores for high performance dust removal[J]. Ceramics International, 2018, 44(10): 11778-11782. [40] Cheng J, Li W, Wang X, et al. Vanadium-based catalytic fibers for selective reduction of NO by NH3 and their potential use on co-processing of dust and NOx[J]. Chemical Engineering Journal, 2022, 431: 133694. [41] Zou D, Zhou C, Gong Y, et al. Efficient construction of tubular mullite fiber membrane filter with high gas permeance for gas/solid filtration[J]. Separation and Purification Technology, 2023, 311: 123258. [42] Xu X, Dong X, Guo A, et al. Effect of binder types on the properties of the mullite fibrous ceramics prepared by TBA-based gel-casting method[J]. Ceramics International, 2017, 43(1): 228-233. [43] Lin J C-T, Hsiao T-C, Hsiau S-S, et al. Effects of temperature, dust concentration, and filtration superficial velocity on the loading behavior and dust cakes of ceramic candle filters during hot gas filtration[J]. Separation and Purification Technology, 2018, 198: 146-154. [44] Gong Y, Zou D, Zhong Z, et al. High-performance mullite fibrous ceramic filter enhanced by composite sintering aids for dust-laden gas filtration[J]. Separation and Purification Technology, 2022, 292: 120967. [45] Zhu J, Zhu R, Hu Y, et al. Low-cost and temperature-resistant mullite fiber sponges with superior thermal insulation and high-temperature PM filtration[J]. Separation and Purification Technology, 2023, 305: 122445. [46] Cuo Z, Zhang J, Yu B, et al. Spherical Al2O3-coated mullite fibrous ceramic membrane and its applications to high-efficiency gas filtration[J]. Separation and Purification Technology, 2019, 215: 368-377. [47] Qiao H, Feng S, Low Z-x, et al. Al-DTPA microfiber assisted formwork construction technology for high-performance SiC membrane preparation[J]. Journal of Membrane Science, 2020, 594: 117464. [48] Wei W, Zhang W Q, Jiang Q, et al. Preparation of non-oxide SiC membrane for gas purification by spray coating[J]. Journal of Membrane Science, 2017, 540: 381-390. [49] Wang F, Hao S, Dong B, et al. Porous-foam mullite-bonded SiC-ceramic membranes for high-efficiency high-temperature particulate matter capture[J]. Journal of Alloys and Compounds, 2022, 893: 162231. [50] Dong B, Min Z, Guan L, et al. Porous mullite-bonded SiC filters prepared by foaming-sol-gel-tape casting for high-efficiency hot flue gas filtration[J]. Separation and Purification Technology, 2022, 295: 121338. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号