Co4S3修饰蜂窝状多孔碳膜用于锂硫电池
作者:郑文姬,董志伟,于淼,贺高红,姜贺龙,姜晓滨,吴雪梅,代岩,李祥村
单位: 1. 大连理工大学 化工学院盘锦分院,精细化工国家重点实验室,膜科学与技术研究开发中心,辽宁 盘锦 124221;2. 大连理工大学 化工学院 精细化工国家重点实验室,膜科学与技术研究开发中心,,辽宁 大连 116024;3. 大连理工大学 盘锦产业技术研究院,,辽宁盘锦 124221
关键词: 相转化法;正戊醇;蜂窝状多孔;碳膜;锂硫电池
DOI号:
分类号: TQ152
出版年,卷(期):页码: 2023,43(6):8-19

摘要:
 以低交换速率的正戊醇作为溶剂,通过相转化法制备了内部结构均一无大孔结构的ZIF-67/CNT/PAN相转化膜,再经硫化、碳化后制备了Co4S3修饰的蜂窝状多孔碳膜(Co4S3@DH-NC)。XRD表征结果证明了Co4S3的成功合成,其负载量高达19.5%(质量分数)。蜂窝状多孔结构可以有效促进电解液以及多硫化物在膜内的均匀分散;Co4S3均匀负载于蜂窝状结构内部,电负性更强的S有利于Co4S3吸附多硫化物;CNT为骨架的高导电网络促进了Co4S3对多硫化物的催化转化。以Co4S3@DH-NC为隔层的锂硫电池在4 C下循环400圈后比容量能保有581.3 mA h/g,库仑效率为100 %左右。Li2S的沉积放电比容量为681.811 mAh/g,相较于DH-NC(43.034 mAh/g)更高,证明了Co4S3@DH-NC吸附催化多硫化物能力的提升。
 In this paper, Co4S3-modified honeycombed carbon film (Co4S3@DH-NC) with abundant pores was prepared by carbonization and vulcanization of ZIF-67/CNT/PAN film, which was constructed through phase conversion method using 1-Pentanol as solvent. XRD results demonstrated the successful synthesis of Co4S3 with a loading of up to 19.5%. The honeycombed porous structure can effectively promote the uniform dispersion of electrolyte and polysulfide in the film. Co4S3 was uniformly loaded inside the honeycomb structure, in which the more electronegative S element facilitated the adsorption of polysulfide. The highly conductive network with CNT as a backbone promoted the catalytic conversion of polysulfides by Co4S3. As a result, the lithium-sulfur battery with Co4S3@DH-NC as an interlayer retained a specific capacity of 581.3 mA h/g and coulomb efficiency of about 100 % after 400 cycles at 4 C. The deposited discharge specific capacity of Li2S was 681.811 mAh/ g, which was higher than that of DH-NC (43.034 mAh/g), demonstrating the significance for Co4S3@DH-NC to adsorb and catalytic polysulfides.

基金项目:
国家自然科学基金项目(21978035, 22178041)

作者简介:
郑文姬(1982-),女,辽宁大连人,副教授,博士,研究方向气体膜分离;无机膜以及杂化膜的设计与制备;先进纳米材料,E-mail:zhengwenji@dlut.edu.cn

参考文献:
 [1] Yang Y, Zheng G, Cui Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013, 42 (7): 3018-3032.
[2] Zhang S. Improved cyclability of liquid electrolyte lithium-sulfur batteries by optimizing electrolyte sulfur ratio[J]. Energies, 2012, 5 (12): 5190-5197.
[3] Wang Z, Jin H, Meng T, et al. Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-air batteries[J]. Advanced Functional Materials, 2018, 28 (39): 1802596.
[4] Jiao L, Zhang C, Geng C, et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries[J]. Advanced Energy Materials, 2019, 9 (19): 1900219.
[5] Liu Y, Ma S, Liu L, et al. Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li-S Batteries[J]. Advanced Functional Materials, 2020, 30 (32): 2002462.
[6] Liu Y T, Liu S, Li G R, et al. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries[J]. Advanced Materials, 2021, 33 (8): 2003955.
[7] Chong Y, Qiang Z X, Qi H J, et al. Lithium-anode protection in lithium-sulfur batteries[J]. Trends in Chemistry, 2019, 1 (7): 693-704.
[8] Lim W G, Jo C, Cho A, et al. Approaching ultrastable high-rate Li-S batteries through hierarchically porous titanium nitride synthesized by multiscale phase separation[J]. Advanced Materials, 2019, 31 (3): 1806547.
[9] Zhu X, Qiu H, Chen P, et al. Anemone-shaped ZIF-67@CNTs as effective electromagnetic absorbent covered the whole x-band[J]. Carbon, 2021, 173: 1-10.
[10] Xu J, Zhang W, Chen Y, et al. MOF-derived porous N-Co3O4@N-C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018, 6 (6): 2797-2807.
[11] Cheng Z, Chen Y, Yang Y, et al. Metallic MoS2 nanoflowers decorated graphene nanosheet catalytically boosts the volumetric capacity and cycle life of lithium-sulfur batteries[J]. Advanced Energy Materials, 2021, 11 (12): 2003718.
[12] Su Y S, Manthiram A. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer[J]. Chemical Communications, 2012, 48 (70): 8817-8819.
[13] Su Y S, Manthiram A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer[J]. Nature Communications, 2012, 3: 1166.
[14] Yang K, Zhong L, Guan R, et al. Carbon felt interlayer derived from rice paper and its synergistic encapsulation of polysulfides for lithium-sulfur batteries[J]. Applied Surface Science, 2018, 441: 914-922.
[15] Zhou X, Liao Q, Bai T, et al. Rational design of graphene@nitrogen and phosphorous dual-doped porous carbon sandwich-type layer for advanced lithium-sulfur batteries[J]. Journal of Materials Science, 2017, 52 (13): 7719-7732.
[16] Fang R, Li G, Zhao S, et al. Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance Lithium-Sulfur batteries[J]. Nano Energy, 2017, 42: 205-214.
[17] Hwang J-Y, Kim H M, Lee S-K, et al. High-energy, high-rate, lithium-sulfur batteries: Synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon-paper interlayer[J]. Advanced Energy Materials, 2016, 6 (1): 1501480.
[18] Zhang K, Qin F, Fang J, et al. Nickel foam as interlayer to improve the performance of lithium–sulfur battery[J]. Journal of Solid State Electrochemistry, 2013, 18 (4): 1025-1029.
[19] Zhang Z, Lai Y, Zhang Z, et al. Al2O3-coated porous separator for enhanced electrochemical performance of Lithium Sulfur batteries[J]. Electrochimica Acta, 2014, 129: 55-61.
[20] Song C, Li G, Yang Y, et al. 3D catalytic MOF-based nanocomposite as separator coatings for high-performance Li-S battery[J]. Chemical Engineering Journal, 2022, 381:122701.
[21] Guo J, Jiang H, Wang K, et al. Enhancing electron conductivity and electron density of single atom based core-shell nanoboxes for high redox activity in lithium sulfur batteries[J]. Small, 2023, 19 (34): 2301849.
[22] Liu J, Song Y, Lin C, et al. Regulating Li+ migration and Li2S deposition by metal-organic framework-derived Co4S3-embedded carbon nanoarrays for durable lithium-sulfur batteries[J]. Science China Materials, 2021, 65 (4): 947-957.
[23] Xie Y, Yin J, Juan Zheng, et al. Synergistic cobalt sulfide/eggshell membrane carbon electrode[J]. ACS Applied Materials & Interfaces, 2019, 11 (35): 32244-32250.
[24] Luo D, Li C, Zhang Y, et al. Design of quasi-MOF nanospheres as a dynamic electrocatalyst toward accelerated sulfur reduction reaction for high-performance lithium-sulfur batteries[J]. Advanced Materials, 2022, 34 (2): 2105541.
[25] Chen S, Luo J, Li N, et al. Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium-sulfur battery cathodes with ultralong lifespan[J]. Energy Storage Materials, 2020, 30: 187-195.
[26] Jin Z, Lin T, Jia H, et al. Expediting the conversion of Li2S2 to Li2S enables high-performance Li-S batteries[J]. ACS Nano, 2021, 15 (4): 7318-7327.
[27] Feng X, Jiao Q, Chen W, et al. Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution[J]. Applied Catalysis B: Environmental, 2021, 286: 119869.
[28] Ding Y, Cheng Q, Wu J, et al. Enhanced dual-directional sulfur redox via a biotemplated single-atomic Fe-N2 mediator promises durable Li-S batteries[J]. Advanced Materials, 2022, 34 (28): 2202256.
[29] Wang Y, Zhang R, Chen J, et al. Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering[J]. Advanced Energy Materials, 2019, 9 (24): 1900953.
[30] Bai J, Fu Y, Zhou P, et al. Synergies of atomically dispersed Mn/Fe single atoms and Fe nanoparticles on n-doped carbon toward high-activity eletrocatalysis for oxygen reduction[J]. ACS Applied Materials & Interfaces, 2022, 14 (26): 29986-29992.
[31] Shen Z, Zhang Z, Li M, et al. Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium-sulfur batteries[J]. ACS Nano, 2020, 14 (6): 6673-6682.
[32] Yao S, Zhang C, Guo R, et al. CoS2-decorated cobalt/nitrogen Co-doped carbon nanofiber networks as dual functional electrocatalysts for enhancing electrochemical redox kinetics in Lithium–Sulfur batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8 (36): 13600-13609.
[33] Chen G, Gao R, Zhao Y, et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons[J]. Advanced Materials, 2018, 30 (3): 1704663.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号