电纺纳米纤维诱导LDH生长促进CO2分离 |
作者:李子恒,郑文姬,代岩,吴雪梅,阮雪华,王汉利,杨振东,贺高红 |
单位: 1.大连理工大学 精细化工国家重点实验室,膜科学与技术研究开发中心,大连 116024; 2.大连理工大学 盘锦产业技术研究院,盘锦 124221;3. 山东华夏神舟新材料有限公司,淄博 256401 |
关键词: 静电纺丝;诱导;HPAN;LDH;CO2分离膜;混合基质膜 |
DOI号: |
分类号: TQ051.893 |
出版年,卷(期):页码: 2023,43(6):35-43 |
摘要: |
先进的功能膜材料是实现高效膜分离的关键,要求兼顾选择性和渗透通量。层状双金属氢氧化物(LDH)表面存在丰富的-OH基团,对CO2具有较高吸附选择性。利用晶种外延生长策略(SES),通过溶剂热合成在电纺纤维载体上诱导生长LDH,并用聚乙二醇二丙烯酸酯(PEGDA)在纤维间隙间原位光聚合得到致密的PEO/HPAN-LDH MMM,用于CO2的高效分离。研究结果表明,沿纤维连续的低结晶LDH具有丰富的亲CO2基团提供连续亲和CO2的传递通路。通过增加LDH生长次数,提高LDH的担载量。性能最佳的PEO/HPAN-LDH-2 MMM的CO2渗透性能为132.1 Barrer,CO2/N2选择性高达99.4,相较于PEO/HPAN MMM,CO2渗透性能提升46.8%,CO2/N2选择性提升25.8%。 |
Advanced functional membranes are the core for achieving efficient membrane separation, requiring a balance of selectivity and permeability. Layered double hydroxides (LDH) have abundant -OH groups on the surface which exhibit high selectivity for CO2 adsorption. Using a crystal species epitaxy growth strategy (SES), LDH was induced to grow on electrospun fiber by solvothermal synthesis, and dense PEO/HPAN-LDH MMM was obtained by in situ photopolymerization of polyethylene glycol diacrylate (PEGDA) between fiber gaps for efficient CO2 separation. Continuous low-crystalline LDH along the fiber with abundant CO2-philic groups provides a continuous affinity for the CO2 transfer pathway. By increasing the growth times of LDH, the loading capacity of LDH is increased. The best performing PEO/HPAN-LDH-2 MMM has a CO2 permeation performance of 132.1 Barrer and a CO2/N2 selectivity of 99.4, which improves the CO2 permeation by 46.8% and CO2/N2 selectivity by 25.8% compared to PEO/HPAN MMM. |
基金项目: |
国家自然科学基金项目(21978035, 22178041, 22021005, 22141001, 21978033)、国家重点研发计划项目(2019YFE0119200)、 山东省重点研发计划项目(2022CXGC010303)、辽宁省振兴人才计划项目(XLYC1901005、XLYC2007040)、辽宁省化学添加剂合成与分离重点实验室项目(ZJKF2007、ZJKF2002、ZJKF2016) |
作者简介: |
李子恒(2000-),男,河北邢台人,学士,研究方向为功能纳米材料及气体分离膜 |
参考文献: |
[1] Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati M M, et al. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions[J]. Prog Polym Sci, 2014, 39(5): 817-61. [2] Ahmadijokani F, Molavi H, Ahmadipouya S, et al. Polyurethane-based membranes for CO2 separation: A comprehensive review[J]. Prog Energ Combust, 2023, 97: 101095. [3] Sandru M, Sandru E M, Ingram W F, et al. An integrated materials approach to ultrapermeable and ultraselective CO2 polymer membranes[J]. Science, 2022, 376(6588): 90-4. [4] Qian Q, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chem Rev, 2020, 120(16): 8161-266. [5] Ghalei B, Sakurai K, Kinoshita Y, et al. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles[J]. Nat Energy, 2017, 2(7): 17086. [6] Kamble A R, Patel C M, Murthy Z V P. A review on the recent advances in mixed matrix membranes for gas separation processes[J]. Renew Sust Energ Rev, 2021, 145: 111062. [7] Tien-Binh N, Vinh-Thang H, Chen X Y, et al. Crosslinked MOF-polymer to enhance gas separation of mixed matrix membranes[J]. J Membr Sci, 2016, 520: 941-50. [8] Marti A M, Venna S R, Roth E A, et al. Simple fabrication method for mixed matrix membranes with in situ MOF growth for gas separation[J]. ACS Appl Mater Interfaces, 2018, 10(29): 24784-90. [9] Li L, Song C, Jiang D, et al. Preparation and enhanced gas separation performance of Carbon/Carbon nanotubes (C/CNTs) hybrid membranes[J]. Sep Purif Technol, 2017, 188: 73-80. [10] Feijani E A, Tavassoli A, Mahdavi H, et al. Effective gas separation through graphene oxide containing mixed matrix membranes[J]. J Appl Polym Sci, 2018, 135(21): 46271. [11] Hu C-C, Cheng P-H, Chou S-C, et al. Separation behavior of amorphous amino-modified silica nanoparticle/polyimide mixed matrix membranes for gas separation[J]. J Membr Sci, 2020, 595: 117542. [12] Lin J Y S. Molecular sieves for gas separation[J]. Science, 2016, 353(6295): 121-2. [13] Kosinov N, Gascon J, Kapteijn F, et al. Recent developments in zeolite membranes for gas separation[J]. J Membr Sci, 2016, 499: 65-79. [14] Shi Y, Wu S, Wang Z, et al. Mixed matrix membranes with highly dispersed MOF nanoparticles for improved gas separation[J]. Sep Purif Technol, 2021, 277: 119449. [15] Winarta J, Meshram A, Zhu F, et al. Metal–organic framework-based mixed-matrix membranes for gas separation: An overview[J]. J Polym Sci, 2020, 58(18): 2518-46. [16] Salehi Maleh M, Raisi A. Comparison of porous and nonporous filler effect on performance of poly (ether-block-amide) mixed matrix membranes for gas separation applications[J]. Chem Eng Res Des, 2019, 147: 545-60. [17] Nuhnen A, Dietrich D, Millan S, et al. Role of filler porosity and filler/polymer interface volume in metal–organic framework/polymer mixed-matrix membranes for gas separation[J]. ACS Appl Mater Interfaces, 2018, 10(39): 33589-600. [18] Zhang N, Wu H, Li F, et al. Heterostructured filler in mixed matrix membranes to coordinate physical and chemical selectivities for enhanced CO2 separation[J]. J Membr Sci, 2018, 567: 272-80. [19] Guo H, Lian S, Li R, et al. Preparation of mixed matrix membranes by layered double hydroxides of amino acid intercalation and Pebax for ameliorated CO2 separation[J]. J Environ Chem Eng, 2023, 11(2): 109399. [20] Lu P, Liu Y, Zhou T, et al. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations[J]. J Membr Sci, 2018, 567: 89-103. [21] Xu X, Wang J, Zhou A, et al. High-efficiency CO2 separation using hybrid LDH-polymer membranes[J]. Nat Commun, 2021, 12: 3069. [22] 胡钟月. LDH基混合基质膜的制备及CO2分离性能的研究[D]. 大连理工大学, 2021. [23] Imtiaz A, Othman M H D, Jilani A, et al. ZIF-filler incorporated mixed matrix membranes (MMMs) for efficient gas separation: A review[J]. J Environ Chem Eng, 2022, 10(6): 108541. [24] Wang Q, Dai Y, Ruan X, et al. ZIF-8 hollow nanotubes based mixed matrix membranes with high-speed gas transmission channel to promote CO2/N2 separation[J]. J Membr Sci, 2021, 630: 119323. [25] Liu X, Shi L, Wan X, et al. Recent progress of spider-silk-inspired adhesive materials[J]. ACS Mater Lett, 2021, 3: 1453-1467. [26] Zheng W, Li Z, Sun T, et al. PAN electrospun nanofiber skeleton induced MOFs continuous distribution in MMMs to boost CO2 capture[J]. J Membr Sci, 2022, 650: 120330. [27] Zheng W, Liu Z, Ding R, et al. Constructing continuous and fast transport pathway by highly permeable polymer electrospun fibers in composite membrane to improve CO2 capture[J]. Sep Purif Technol, 2022, 285: 120332. [28] Cheng Y, Li L, He W, et al. Seeds embedded epitaxial growth strategy for PAN@LDH membrane with Mortise-Tenon structure as efficient adsorbent for particulate matter capture[J]. Appl Catal B-Environ, 2020, 263: 118312. [29] Sun T, Zheng W, Chen J, et al. Nanofibers interpenetrating network mimicking “reinforced-concrete” to construct mechanically robust composite membrane for enhanced CO2 separation[J]. J Membr Sci, 2021, 639: 119749. [30] 王东悦. 功能小分子调控MOF有效孔径实现气体精准筛分[D]. 大连理工大学, 2022. [31] Huang N, Wang C, Chen C. Ethylene vinyl acetate copolymer/Mg–Al-layered double hydroxide nanocomposite membranes applied in CO2/N2 gas separation[J]. Polym Composite, 2021, 42(8): 4065-72. [32] Zheng W, Yu J, Hu Z, et al. 3D hollow CoNi-LDH nanocages based MMMs with low resistance and CO2-philic transport channel to boost CO2 capture[J]. J Membr Sci, 2022, 653: 120542. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号