催化臭氧的MnO2-TiO2/陶瓷膜制备及其降解苯酚性能
作者:张建宇,王虹,张伟
单位: 1.天津工业大学 分离膜与膜过程国家重点实验室,材料科学与工程学院,分离膜科学与技术国际联合研究中心,天津300387
关键词: MnO2-TiO2/CM;臭氧;苯酚;催化臭氧氧化
DOI号:
分类号: TQ520.9
出版年,卷(期):页码: 2023,43(6):44-52

摘要:
 对陶瓷膜进行催化功能层的构建,以提高其催化臭氧性能。以商业陶瓷膜为基膜(CM),采用水热法负载二氧化钛纳米棒,制备TiO2棒/陶瓷膜(Tir/CM);再通过浸渍法以Tir/CM为载体负载二氧化锰颗粒,制备MnO2-TiO2棒/陶瓷膜(MnO2-TiO2/CM)。采用场发射扫描电子显微镜(FESEM)、X射线衍射仪(XRD)透射电子显微镜(TEM)和X射线衍射光电子能谱仪(XPS)等手段对改性陶瓷膜进行形貌及物相分析,以MnO2-TiO2/CM为臭氧催化膜构建催化臭氧反应器用于处理苯酚废水,研究了不同工艺参数对苯酚去除效果的影响,同时对比了不同反应类型对苯酚的矿化效果。结果表明:成功制备出MnO2-TiO2/CM,其中TiO2纳米棒呈金红石型;在苯酚质量浓度为40 mg/L,pH值为9.0,臭氧投加量为4.8mg/L的条件下,MnO2-TiO2/CM催化臭氧降解苯酚效果最佳,且具有较好的使用稳定性。
 The ceramic membranes were constructed with catalytic functional layers to improve their catalytic ozone performance. In this paper, TiO2 rod/ceramic membrane (Tir/CM) was prepared by hydrothermal method with commercial ceramic membrane as the base membrane (CM) and loaded with titanium dioxide nanorods, and then MnO2-TiO2 rod/ceramic membrane (MnO2-TiO2/CM) was prepared by sol-gel method with Tir/CM as the carrier loaded with manganese dioxide particles. The surface morphology and chemical crystallography of CM, Tir/CM and MnO2-TiO2/CM were analyzed by field emission scanning electron microscopy (FESEM) and X-ray diffractometer (XRD), and the microscopic morphology of MnO2-TiO2 nanorods was observed and analyzed by transmission electron microscopy (TEM), and the elemental valence state of MnO2-TiO2/CM was analyzed by X-ray diffraction photoelectron spectroscopy (XPS), and MnO2-TiO2/CM was used as ozone catalytic membrane to construct the catalytic ozone reactor was used to treat phenol wastewater, and the effects of different process parameters on phenol removal were investigated, while the mineralization effects of different reaction types on phenol were compared. The results showed that the MnO2-TiO2/CM was successfully prepared, in which the TiO2 nanorods were rutile in shape; under the conditions of phenol concentration of 40 mg/L, pH of 9.0 and ozone dosing of 4.8 mg/L, the MnO2-TiO2/CM catalytic ozone degradation of phenol had the best effect and had good stability in use.

基金项目:
国家重点研发计划项目(2020YFA0211002)

作者简介:
张建宇(1997-),男,山东济宁人,硕士生,主要研究方向为陶瓷膜催化臭氧处理废水.

参考文献:
 [1] Akhil D,Lakshmi D,Kumar S P,et al. Occurrence and removal of antibiotics from industrial wastewater[J]. Environ Chem Lett,2021,19(2): 1477-1507.
[2] Sun X,Wang C,Li Y,et al. Treatment of phenolic wastewater by combined UF and NF/RO processes[J]. Desalination,2015,355: 68-74.
[3] Kazemi P,Peydayesh M,Bandegi A,et al. Stability and extraction study of phenolic wastewater treatment by supported liquid membrane using tributyl phosphate and sesame oil as liquid membrane[J]. Chem Eng Res Des,2014,92(2): 375-383.
[4] Mohammadi S,Kargari A,Sanaeepur H,et al. Phenol removal from industrial wastewaters: a short review[J]. Desalin Water Treat,2015,53: 2215-2234.
[5] Mukherjee S,Basak B,Bhunia B,et al. Potential use of polyphenol oxidases (PPO) in the bioremediation of phenolic contaminants containing industrial wastewater[J]. Rev Environ Sci Biotechnol,2013,12: 61-73.,
[6] Khazaali F,Kargari A,Rokhsaran M. Application of low-pressure reverse osmosis for effective recovery of Bisphenol A from aqueous wastes[J]. Desalin Water Treat,2014,52(40-42): 7543–7551.
[7] Ni G,Zhao G,Jiang Y,et al. Steam plasma jet treatment of phenol in aqueous solution at atmospheric pressure[J]. Plasma Process Polym,2013,10: 353-363.
[8] Mukherjee R,De S. Adsorptive removal of phenolic compounds using cellulose acetate phthalate-alumina nanoparticle mixed matrix membrane[J]. J Hazard Mater,2014,265: 8-19.
[9] Wei C,Zhang F,Yun H,et al. Ozonation in water treatment: the generation,basic properties of ozone and its practical application[J]. Rev Chem Eng,2016,33(1):49-89.
[10] Yang Z Y,Zhang Y G,Zhu W J,et al. Effective oxidative degradation of coal gasification wastewater by ozonation: A process study[J]. Chemosphere,2020,255:126963.1-126963.11.
[11] Miao R,Yang Z,Feng Y,et al. Mechanism of pre-ozonation in control of protein fouling of ultrafiltration membranes: Synergistic effect between ozone oxidation and aeration[J]. J Water Process Eng,2021,41(193): 102038.
[12] Bhosale G S,Vaidya P D,Joshi J B,et al. Kinetics of ozonation of phenol and substituted phenols[J]. Ind Eng Chem Res,2019,58(18): 7461-7466.
[13] Bailey P S. The reactions of Ozone with organic compounds[J]. J Hygiene,1958,30(5): 433-467.
[14] 徐新华,赵伟荣. 水与废水的臭氧处理[M]. 化学工业出版社环境科学与工程出版中心,2003.
[15] Kasprzykhordern B,Ziolek M,Nawrocki J. Catalytic ozonation and methods of enhancing molecularozone reactions in water treatment[J]. Appl Catal B,2003,46(4): 639-669.
[16] Squire D. Reverse osmosis concentrate disposal in the UK[J]. Desalination,2000,132: 47-54.
[17] Samaei,Seyed,Mohsen,et al. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters-A review[J]. Sep Purif Technol,2018,200: 198-220.
[18] Muric A,Petrinic I,Christensen M L. Comparison of ceramic and polymeric ultrafiltration membranes for treating wastewater from metalworking industry[J]. Chem Eng J,2014,255: 403-410.
[19] Li C,Sun W,Lu Z,et al. Ceramic nanocomposite membranes and membrane fouling: A review[J]. Water Res,2020,175: 115674.
[20] Li K,Wen G,Li S,et al. Effect of pre-oxidation on low pressure membrane (LPM) for water and wastewater treatment: A review[J]. Chemosphere,2019,(231): 287-300.
[21] Yang Y L,Fu W Y,Chen X X,et al. Ceramic nanofiber membrane anchoring nanosized Mn2O3 catalytic ozonation of sulfamethoxazole in water[J]. J Hazard Mater,2022,(436): 0304-0324.
[22] Li A,Liu Y,Wang Z B,et al. Novel catalytic ceramic membranes anchored with MnMe oxide and their catalytic ozonation performance towards atrazine degradation[J]. J Membr Sci,2021,(279): 1383-5866.
[23] 卢凤华,陈灌,刘敏,等. 靛蓝二磺酸钠分光光度法和碘滴定法测定水中臭氧含量适用条件的比较[J]. 理化检验:化学分册,2014,50(6): 778-780.
[24] Rodrigues G D,Lemos L R,Silva L H M,et al. A green and sensitive method to determine phenols in water and wastewater samples using an aqueous two-phase system [J]. Talanta,2010,80(3): 1139-1144.
[25] 周婧. 纳米结构二氧化钛的可控制备和光催化及光电化学性能研究[D]. 杭州:浙江大学,2012.
[26] Cheng F Y,Zhao J Z,Song W,et al. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries[J]. Inorg Chem,2006,45(5): 2038-2044.
[27] Ram R A,Hillebrand P,Stellmach D,et al. Evaluation of MnOx,Mn2O3,and Mn3O4 electrodeposited films for the oxygen evolution reaction of water[J]. J Phys Chem,2014,118(26): 14073-14081.
[28] Nawrocki J,Kasprzyk H B. The efficiency and mechanisms of catalytic ozonation[J]. Appl Catal B,2010,99(1-2): 27-42.
[29] Wang Y,Zhang H,Zhang J H,et al. Degradation of tetracycline in aqueous media by ozonation in an internalloop-lift reactor[J]. J Hazard Mater,2011,192(1): 35-43.
[30] Deng J,Shao Y,Gao N,et al. CoFeO4 magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water[J]. J Hazard Mater,2013,262: 836-844.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号