链段疏水性对聚咔唑基三联苯基哌啶阴离子 交换膜的影响 |
作者:蔡志鸿,张秋根,朱爱梅,刘庆林 |
单位: 厦门大学 化学化工学院,福建省厦门市 361000 |
关键词: 燃料电池;阴离子交换膜;柔性链段 |
DOI号: |
分类号: TQ028; O632.7 |
出版年,卷(期):页码: 2023,43(6):79-88 |
摘要: |
通过引入不同疏水性的柔性链段(含氟链段、烷基链段和含羟基链段)可以提升阴离子交换膜(AEM)的性能。本文着重介绍通过超酸催化反应制备的3种AEM,分别为含氟戊烷与1-己基-1-甲基哌啶鎓的聚咔唑基三联苯基哌啶(PCTPPF)、含正己烷与1-己基-1-甲基哌啶鎓的聚咔唑基三联苯基哌啶(PCTPPC)和含戊醇与1-己基-1-甲基哌啶鎓的聚咔唑基三联苯基哌啶(PCTPPO)。本文重点通过测试接触角、溶胀率、电化学电阻和单电池性能,来表征AEM的亲疏水性、离子电导率、碱性稳定性和单电池功率密度等性能。其中,强疏水性的PCTPPF具有低溶胀(14.9%, 80 ℃)的特性,而且其离子电导率(160.4 mS/cm, 80 ℃)和单电池功率密度(646 mW/cm2, 80 ℃)均具有优势。而亲水链段的PCTPPO能够在较为恶劣的碱性环境中维持高离子电导保留率(86.3%, 2 M NaOH)。相较于PCTPPF和PCTPPO,PCTPPC的各项性能则较为均衡。 |
The performance of anion exchange membranes (AEMs) is improved by introducing flexible chains (fluorine-containing, alkyl-containing and hydroxyl-containing chains) with different hydrophobicities. This article focuses on three AEMs prepared through superacid-catalyzed condensation reaction, namely poly(carbazolyl terphenyl piperidinium) containing fluoropentane and 1-hexyl-1-methylpiperidium (PCTPPF), poly(carbazolyl terphenyl piperidinium) containing hexane and 1-hexyl-1-methylpiperidium (PCTPPC), and poly(carbazolyl terphenyl piperidinium) containing pentanol and 1-hexyl-1-methylpiperidium (PCTPPO). This article focuses on characterizing the hydrophilicity and hydrophobicity, ionic conductivity, alkaline stability and single cell power density of AEM by testing contact angle, swelling ratio, electrochemical resistance and single cell performance. Among them, PCTPPF with a strong hydrophobicity have a low swelling ratio (14.9%, 80 ℃), an excellent ionic conductivity (160.4 mS/cm, 80 ℃) and single cell performance (646 mW/cm2, 80 ℃). However, the hydrophilic PCTPPO can maintain a high ionic conductivity retention (86.3%, 2 mol/L NaOH) in a harsh alkaline environment. Compared with PCTPPF and PCTPPO, the performance of PCTPPC is balanced. |
基金项目: |
国家自然基金面上项目(22078272 & 22278340) |
作者简介: |
蔡志鸿(1997-),男,福建省南平市人,硕士研究生,主要从事功能膜材料的制备 |
参考文献: |
[1] Sun L X, Choo Y S L, Gao W T, et al. Self-assembly of porphyrin to realize the high ionic conductivity of anion-exchange membranes[J]. ACS Applied Energy Materials, 2022, 5(12): 15809-15818. [2] Zhang Y, Chen W, Li T, et al. A rod-coil grafts strategy for N-spirocyclic functionalized anion exchange membranes with high fuel cell power density[J]. Journal of Power Sources, 2021, 490: 229544. [3] Xu Z, Wan L, Liao Y, et al. Anisotropic anion exchange membranes with extremely high water uptake for water electrolysis and fuel cells[J]. Journal of Materials Chemistry A, 2021, 9(41): 23485-23496. [4] Zhu L, Peng X, Shang S-L, et al. High performance anion exchange membrane fuel cells enabled by fluoropoly(olefin) membranes[J]. Advanced Functional Materials, 2019, 29(26): 1902059. [5] Wu X, Chen N, Hu C, et al. Fluorinated poly(aryl piperidinium) membranes for anion exchange membrane fuel cells[J]. Advanced Materials, 2023, n/a(n/a): 2210432. [6] Gou W W, Gao W T, Gao X L, et al. Highly conductive fluorinated poly(biphenyl piperidinium) anion exchange membranes with robust durability[J]. J Membr Sci, 2022, 645: 120200. [7] Fan Y, Zhou J, Chen J, et al. Polyaryl piperidine anion exchange membranes with hydrophilic side chain[J]. International Journal of Hydrogen Energy, 2023. [8] Cai Z H, Gao X L, Gao W T, et al. Effect of hydrophobic side chain length on poly(carbazolyl terphenyl piperidinium) anion exchange membranes[J]. ACS Applied Energy Materials, 2022, 5(8): 10165-10176. [9] Shen B, Sana B, Pu H. Multi-block poly(ether sulfone) for anion exchange membranes with long side chains densely terminated by piperidinium[J]. J Membr Sci, 2020, 615: 118537. [10] Hu C, Park J H, Kang N Y, et al. Effects of hydrophobic side chains in poly(fluorenyl-co-aryl piperidinium) ionomers for durable anion exchange membrane fuel cells[J]. Journal of Materials Chemistry A, 2023, 11(4): 2031-2041. [11] Zhang J, Zhang K, Liang X, et al. Self-aggregating cationic-chains enable alkaline stable ion-conducting channels for anion-exchange membrane fuel cells[J]. Journal of Materials Chemistry A, 2021, 9(1): 327-337. [12] Cha M S, Park J E, Kim S, et al. Poly(carbazole)-based anion-conducting materials with high performance and durability for energy conversion devices[J]. Energy & Environmental Science, 2020, 13(10): 3633-3645. [13] Li X, Yang K, Wang Z, et al. Chain architecture dependence of morphology and water transport in poly(fluorene alkylene)-based anion-exchange membranes[J]. Macromolecules, 2022, 55(23): 10607-10617. [14] Olsson J S, Pham T H, Jannasch P. Poly(arylene piperidinium) hydroxide ion exchange membranes: Synthesis, alkaline stability, and conductivity[J]. Advanced Functional Materials, 2018, 28(2): 1702758. [15] Sun Z, Lin B, Yan F. Anion-exchange membranes for alkaline fuel-cell applications: The effects of cations[J]. ChemSusChem, 2018, 11(1): 58-70. [16] Dekel D R, Rasin I G, Brandon S. Predicting performance stability of anion exchange membrane fuel cells[J]. Journal of Power Sources, 2019, 420: 118-123. [17] Xu F, Chen Y, Cao X, et al. Comb-shaped polyfluorene with variable alkyl chain length for application as anion exchange membranes[J]. Journal of Power Sources, 2022, 545: 231880. [18] Liu Q, Ma W, Tian L, et al. Side-chain cation-grafted poly(biphenyl piperidine) membranes for anion exchange membrane fuel cells[J]. Journal of Power Sources, 2022, 551: 232105. [19] Wang X, Qiao X, Liu S, et al. Poly(terphenyl piperidinium) containing hydrophilic crown ether units in main chains as anion exchange membranes for alkaline fuel cells and water electrolysers[J]. J Membr Sci, 2022, 653: 120558. [20] Gutru R, Turtayeva Z, Xu F, et al. A comprehensive review on water management strategies and developments in anion exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19642-19663. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号