二维沸石纳米片的合成及其分离膜研究现状 |
作者:李艳美,魏嫣莹,王海辉 |
单位: 1.华南理工大学 化学与化工学院,绿色化学产品技术广东省重点实验室,广州510000 2.清华大学 化学工程系,膜技术与工程研究中心,北京100084 |
关键词: 膜分离;二维膜;沸石纳米片 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2023,43(6):139-148 |
摘要: |
二维(2D)纳米片堆叠构建的层状分离膜的出现为下一代高效膜分离技术开辟了新途径。2D沸石纳米片具有纳米级别的厚度及较大的横纵比,其面内规整孔道为分子传质提供了丰富的路径,并可有效缩短传统无孔纳米片堆叠构筑的二维膜内分子绕行的传质路径,有望用于制备具有优异分离性能的二维材料膜。本文综述了2D沸石纳米片的合成方法及沸石纳米片膜的研究进展,重点介绍了2D沸石纳米片合成方法,包括表面活性剂辅助合成、沸石层状前驱体剥离和Assembly - disassembly - organization - reassembly(ADOR)法,以及2D沸石纳米片膜的制备方法及其在膜分离中的应用,最后对该领域当前的技术局限性和未来的研究方向进行展望。 |
The emergence of two-dimensional (2D) nanosheet stacks of laminar membranes open up new avenue for next-generation high-efficiency membrane separation technologies. 2D zeolite nanosheets with nanoscale thickness and large aspect ratios have regular in-plane pore channels that provide a amount of pathways for molecules, and they can effectively shorten the mass transfer path of molecules bypassing nanosheets within the 2D membranes constructed by stacking traditional non-porous nanosheet, which are expected to be used for the preparation of 2D membranes with excellent separation performance. In this review, we discuss the recent breakthrough progress of synthesis methods of 2D zeolite nanosheets and zeolite nanosheet-based membranes, focusing on 2D zeolite nanosheet synthesis methods, including surfactant-assisted synthesis of nanosheet zeolites, precursor detemplation synthesis of nanosheet zeolites, and Assembly - Disassembly - Organization - Reassembly strategy (ADOR) synthesis of nanosheet zeolites, as well as the preparation methods of 2D zeolite nanosheet-based membranes and their applications in membrane separations. Finally, an outlook analysis was made on the current technological limitations and future research directions in this field. |
基金项目: |
国家重点研发计划青年科学家项目(2021YFB3802500);国家自然科学基金项目(22022805和22078107),制浆造纸工程国家重点实验室培育项目(2022PY04),中央高校基本业务费(2022ZYGXZR010) |
作者简介: |
李艳美(1995-),女,山东德州人,博士生,研究方向为二维沸石膜分离,E-mail:1159867560@qq.com. |
参考文献: |
[1] P?ech J, Pizarro P, Serrano D P, et al. From 3D to 2D zeolite catalytic materials[J]. Chem Soc Rev, 2018, 47(22): 8263-8306. [2] Dusselier M, Davis M E. Small-pore zeolites: Synthesis and catalysis[J]. Chemical Reviews, 2018, 118(11): 5265-5329. [3] Meier W O D, Baerlocher C. . Atlas of zeolite structure types[J]. Zeolites, 1996, 17(1): 1-229. [4] Berger F, Rybicki M, Sauer J. Molecular dynamics with chemical accuracy-alkane adsorption in acidic zeolites[J]. ACS Catal, 2023, 13(3): 2011-2024. [5] Jeon M Y, Kim D, Kumar P, et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets[J]. Nature, 2017, 543(7647): 690-694. [6] Wang T, Chu Y, Li X, et al. Zeolites as a class of semiconductors for high-performance electrically transduced sensing[J]. J Am Chem Soc, 2023, 145(9): 5342-5352. [7] Miao J, Lang Z, Xue T, et al. Revival of zeolite-templated nanocarbon materials: Recent advances in energy storage and conversion[J]. Advanced Science, 2020, 7(20): 2001335. [8] Valtchev V, Majano G, Mintova S, et al. Tailored crystalline microporous materials by post-synthesis modification[J]. Chem Soc Rev, 2013, 42(1): 263-290. [9] Bacakova L, Vandrovcova M, Kopova I, et al. Applications of zeolites in biotechnology and medicine – A review[J]. Biomater Sci, 2018, 6(5): 974-989. [10] Fenwick O, Coutiño-Gonzalez E, Grandjean D, et al. Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites[J]. Nat Mater, 2016, 15(9): 1017-1022. [11] Pérez-Ramírez J, Christensen C H, Egeblad K, et al. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design[J]. Chem Soc Rev, 2008, 37(11): 2530-2542. [12] Roth W J, Nachtigall P, Morris R E, et al. Two-dimensional zeolites: Current status and perspectives[J]. Chemical Reviews, 2014, 114(9): 4807-4837. [13] Roth W J, Gil B, Makowski W, et al. Layer like porous materials with hierarchical structure[J]. Chem Soc Rev, 2016, 45(12): 3400-3438. [14] Xu L, Sun J. Recent advances in the synthesis and application of two-dimensional zeolites[J]. Adv Energy Mater, 2016, 6(17): 1600441. [15] Schulman E, Wu W, Liu D. Two-dimensional zeolite materials: structural and acidity properties[J]. Materials, 2020, 13(8): 1822. [16] Roth W J. Chapter 7 - synthesis of delaminated and pillared zeolitic materials [M]. Studies in Surface Science and Catalysis. Elsevier. 2007: 221-239. [17] Ramos F S O, Pietre M K D, Pastore H O. Lamellar zeolites: An oxymoron?[J]. RSC Adv, 2013, 3(7): 2084-2111. [18] Chen J-Q, Li Y-Z, Hao Q-Q, et al. Controlled direct synthesis of single- to multiple-layer MWW zeolite[J]. Natl Sci Rev, 2021, 8(7): nwaa236. [19] Xu L, Ji X, Li S, et al. Self-assembly of cetyltrimethylammonium bromide and lamellar zeolite precursor for the preparation of hierarchical MWW zeolite[J]. Chem Mater, 2016, 28(12): 4512-4521. [20] Zhou Y, Mu Y, Hsieh M F, et al. Enhanced surface activity of MWW zeolite nanosheets prepared via a one-step synthesis[J]. J Am Chem Soc, 2020, 142(18): 8211-8222. [21] Roth W J, Sasaki T, Wolski K, et al. Exfoliated ferrierite-related unilamellar nanosheets in solution and their use for preparation of mixed zeolite hierarchical structures[J]. J Am Chem Soc, 2021, 143(29): 11052-11062. [22] Choi M, Na K, Kim J, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009, 461(7261): 246-249. [23] Roth W J, Nachtigall P, Morris R E, et al. A family of zeolites with controlled pore size prepared using a top-down method[J]. Nat Chem, 2013, 5(7): 628-633. [24] Griffith K J, Harada Y, Egusa S, et al. Titanium niobium oxide: from discovery to application in fast-charging lithium-Ion batteries[J]. Chem Mater, 2021, 33(1): 4-18. [25] Roth W J, Kresge C T, Vartuli J C, et al. MCM-36: The first pillared molecular sieve with zeolite properties[J]. Studies in Surface Science and Catalysis, 1995, 94: 301-308. [26] Corma A, Fornes V, Pergher S B, et al. Delaminated zeolite precursors as selective acidic catalysts[J]. Nature, 1998, 396(6709): 353-356. [27] Corma A, Diaz U, Domine M E, et al. New aluminosilicate and titanosilicate delaminated materials active for acid catalysis, and oxidation reactions using H2O2[J]. J Am Chem Soc, 2000, 122(12): 2804-2809. [28] Corma A, Fornés V, Díaz U. ITQ-18 a new delaminated stable zeolite[J]. Chem Commun, 2001, (24): 2642-2643. [29] Ogino I, Nigra M M, Hwang SJ, et al. Delamination of layered zeolite precursors under mild conditions: Synthesis of UCB-1 via fluoride/chloride anion-promoted exfoliation[J]. J Am Chem Soc, 2011, 133(10): 3288-3291. [30] Roth W J, Sasaki T, Wolski K, et al. Liquid dispersions of zeolite monolayers with high catalytic activity prepared by soft-chemical exfoliation[J]. Science Advances, 2020, 6(12): eaay8163. [31] Varoon K, Zhang X, Elyassi B, et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane[J]. Science, 2011, 334(6052): 72-75. [32] Oberhagemann U, Bayat P, Marler B, et al. A layer silicate: Synthesis and structure of the zeolite precursor RUB-15—[N(CH3)4]8[Si24O52(OH)4]·20 H2O[J]. Angew Chem Int Edit, 1996, 35(23-24): 2869-2872. [33] Gies H, Marler B, Vortmann S, et al. New structures—new insights: Progress in structure analysis of nanoporous materials[J]. Microporous Mesoporous Mater, 1998, 21(4): 183-197. [34] Yilmaz B, Müller U, Feyen M, et al. New zeolite Al-COE-4: Reaching highly shape-selective catalytic performance through interlayer expansion[J]. Chem Commun, 2012, 48(94): 11549-11551. [35] Kennedy G J, Lawton S L, Fung A S, et al. Multinuclear MAS NMR studies of zeolites MCM-22 and MCM-49[J]. Catal Today, 1999, 49(4): 385-399. [36] Takahashi N, Hata H, Kuroda K. Exfoliation of layered silicates through immobilization of imidazolium groups[J]. Chem Mater, 2011, 23(2): 266-273. [37] Osada S, Iribe A, Kuroda K. Exfoliation of layered octosilicate by simple cation exchange with didecyldimethylammonium ions[J]. Chem Lett, 2012, 42(1): 80-82. [38] Dakhchoune M, Villalobos L F, Semino R, et al. Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets[J]. Nat Mater, 2021, 20(3): 362-369. [39] Maheshwari S, Jordan E, Kumar S, et al. Layer structure preservation during swelling, pillaring, and exfoliation of a zeolite precursor[J]. J Am Chem Soc, 2008, 130(4): 1507-1516. [40] Park W, Yu D, Na K, et al. Hierarchically structure-directing effect of multi-ammonium surfactants for the generation of MFI zeolite nanosheets[J]. Chem Mater, 2011, 23(23): 5131-5137. [41] Na K, Jo C, Kim J, et al. Directing zeolite structures into hierarchically nanoporous architectures[J]. Science, 2011, 333(6040): 328-332. [42] Möller K, Bein T. Pores within pores—How to craft ordered hierarchical zeolites[J]. Science, 2011, 333(6040): 297-298. [43] Na K, Choi M, Park W, et al. Pillared MFI zeolite nanosheets of a single-unit-cell thickness[J]. J Am Chem Soc, 2010, 132(12): 4169-4177. [44] Jung J, Jo C, Cho K, et al. Zeolite nanosheet of a single-pore thickness generated by a zeolite-structure-directing surfactant[J]. J Mater Chem, 2012, 22(11): 4637-4640. [45] Lu K, Huang J, Ren L, et al. High ethylene selectivity in methanol-to-olefin (MTO) reaction over MOR-zeolite nanosheets[J]. Angew Chem Int Edit, 2020, 59(15): 6258-6262. [46] Xu D, Jing Z, Cao F, et al. Surfactants with aromatic-group tail and single quaternary ammonium head for directing single-crystalline mesostructured zeolite nanosheets[J]. Chem Mater, 2014, 26(15): 4612-4619. [47] Xu D, Ma Y, Jing Z, et al. π–π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets[J]. Nat Commun, 2014, 5(1): 4262. [48] Zhang Y, Che S. π–π interactions between aromatic groups in amphiphilic molecules: Directing hierarchical growth of porous zeolites[J]. Angew Chem Int Edit, 2020, 59(1): 50-60. [49] Margarit V J, Martínez-Armero M E, Navarro M T, et al. Direct dual-template synthesis of MWW zeolite monolayers[J]. Angew Chem Int Edit, 2015, 54(46): 13724-13728. [50] Osman M, Al-Khattaf S, Díaz U, et al. Influencing the activity and selectivity of alkylaromatic catalytic transformations by varying the degree of delamination in MWW zeolites[J]. Catal Sci Technol, 2016, 6(9): 3166-3181. [51] Luo H Y, Michaelis V K, Hodges S, et al. One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent[J]. Chem Sci, 2015, 6(11): 6320-6324. [52] Grzybek J, Roth W J, Gil B, et al. A new layered MWW zeolite synthesized with the bifunctional surfactant template and the updated classification of layered zeolite forms obtained by direct synthesis[J]. J Mater Chem A, 2019, 7(13): 7701-7709. [53] Paillaud J L, Harbuzaru B, Patarin J, et al. Extra-large-pore zeolites with two-dimensional channels formed by 14 and 12 rings[J]. Science, 2004, 304(5673): 990-992. [54] Corma A, Díaz-Cabañas M J, Rey F, et al. ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications[J]. Chem Commun, 2004, (12): 1356-1357. [55] Corma A, Puche M, Rey F, et al. A zeolite structure (ITQ-13) with three sets of medium-pore crossing channels formed by 9- and 10-rings[J]. Angew Chem Int Edit, 2003, 42(10): 1156-1159. [56] Corma A, Rey F, Valencia S, et al. A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity[J]. Nat Mater, 2003, 2(7): 493-497. [57] Roth W J, Shvets O V, Shamzhy M, et al. Postsynthesis transformation of three-dimensional framework into a lamellar zeolite with modifiable architecture[J]. J Am Chem Soc, 2011, 133(16): 6130-6133. [58] Chlubná P, Roth W J, Greer H F, et al. 3D to 2D routes to ultrathin and expanded zeolitic materials[J]. Chem Mater, 2013, 25(4): 542-547. [59] Grajciar L, Bludský O, Roth W J, et al. Theoretical investigation of layered zeolite frameworks: Interaction between IPC-1P layers derived from zeolite UTL[J]. Catal Today, 2013, 204: 15-21. [60] Koros W J, Zhang C. Materials for next-generation molecularly selective synthetic membranes[J]. Nat Mater, 2017, 16(3): 289-297. [61] Saha K, Deka J, Gogoi R K, et al. Applications of lamellar membranes reconstructed from clay mineral-based nanosheets: A review[J]. ACS Applied Nano Materials, 2022, 5(11): 15972-15999. [62] Ding L, Wei Y, Li L, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nat Commun, 2018, 9(1): 155. [63] Shen J, Liu G, Han Y, et al. Artificial channels for confined mass transport at the sub-nanometre scale[J]. Nature Reviews Materials, 2021, 6(4): 294-312. [64] Agrawal K V, Topuz B, Jiang Z, et al. Solution-processable exfoliated zeolite nanosheets purified by density gradient centrifugation[J]. AIChE J, 2013, 59(9): 3458-3467. [65] Tsapatsis M. 2-dimensional zeolites[J]. AIChE J, 2014, 60(7): 2374-2381. [66] Agrawal K V, Topuz B, Pham T C T, et al. Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers[J]. Adv Mater, 2015, 27(21): 3243-3249. [67] Zhang H, Xiao Q, Guo X, et al. Open-pore two-dimensional MFI zeolite nanosheets for the fabrication of hydrocarbon-isomer-selective membranes on porous polymer supports[J]. Angew Chem Int Edit, 2016, 55(25): 7184-7187. [68] Kim D, Ghosh S, Akter N, et al. Twin-free, directly synthesized MFI nanosheets with improved thickness uniformity and their use in membrane fabrication[J]. Science Advances, 2022, 8(14): eabm8162. [69] Wang J, Fan Y, Jiang J, et al. Layered zeolite for assembly of two-dimensional separation membranes for hydrogen purification[J]. Angew Chem Int Edit, 2023, 62: e202304734. [70] Kim D, Jeon M Y, Stottrup B L, et al. Para-Xylene ultra-selective zeolite MFI membranes fabricated from nanosheet monolayers at the air–water interface[J]. Angew Chem Int Edit, 2018, 57(2): 480-485. [71] Rangnekar N, Shete M, Agrawal K V, et al. 2D zeolite coatings: langmuir–schaefer deposition of 3?nm thick MFI zeolite nanosheets[J]. Angew Chem Int Edit, 2015, 54(22): 6571-6575. [72] Jeong H-K, Krych W, Ramanan H, et al. Fabrication of polymer/selective-flake nanocomposite membranes and their use in gas separation[J]. Chem Mater, 2004, 16(20): 3838-3845. [73] Cao Z, Zeng S, Xu Z, et al. Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines[J]. Science Advances, 2018, 4(11): eaau8634. [74] Awaya K, Sekiguchi K, Kitagawa H, et al. Preparation of silicate nanosheets by delaminating RUB-18 for transparent, proton conducting membranes[J]. Chem Commun, 2021, 57(51): 6304-6307. [75] Loch P, Schuchardt D, Algara S G, et al. Nematic suspension of a microporous layered silicate obtained by forceless spontaneous delamination via repulsive osmotic swelling for casting high-barrier all-inorganic films[J]. Science Advances, 2022, 8(20): eabn9084. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号