全氟离子膜纳米结构演变的研究进展 |
作者:于修源,王燕,韩理理,冯威 |
单位: 1东岳氟硅科技集团有限公司,山东 淄博 256401;2山东东岳高分子材料有限公司,山东 淄博 256401;3含氟功能膜材料国家重点实验室,山东 淄博 256401 |
关键词: 全氟离子膜;SAXS;SANS;氯碱工业;纳米结构 |
DOI号: |
分类号: TQ01 |
出版年,卷(期):页码: 2023,43(6):159-169 |
摘要: |
简述了全氟离子膜微观结构模型的研究进展,以此展开了对于全氟离子膜纳米结构研究,并详细阐述了全氟离子膜纳米结构演变的研究进展及纳米结构与离子膜离子传输能力的相关性分析。贯穿整个研究进展最重要的是微观表征技术的应用,这些技术包括广角X射线衍射 (Wide-Angle X-ray Diffraction, WAXD)、小角X射线散射 (Small-Angle X-ray Scattering, SAXS) 和小角中子散射 (Small-Angle Neutron Scattering, SANS),以此为基础讨论了吸水率、温度、预处理等对全氟离子膜的纳米结构的影响。 |
The research progress in the microstructure model of perfluorinated ion membranes was briefly introduced, and the nanostructure of perfluorinated ion membranes was studied. The research progress in the evolution of nanostructure of perfluorinated ion membranes and the correlation analysis between nanostructure and ion transport capacity of perfluorinated ion membranes were described in detail. Throughout the whole research progress, the most important is the application of microscopic characterization techniques, these techniques include Wide-Angle X-ray Diffraction (WAXD), Small-Angle X-ray Scattering (SAXS) and Small-Angle Neutron Scattering (SANS). Based on this , the effects of water absorption, temperature and pretreatment on the nanostructure of perfluorinated ionic membranes were discussed. |
基金项目: |
国家重点研发计划项目(2022YFB3808900) |
作者简介: |
于修源(1966-),男,山东淄博人,高级工程师,硕士,从事氟硅材料、膜材料工艺技术研发与生产 |
参考文献: |
[1] Yeager H L. Sodium ion diffusion in Nafion ion exchange membranes[J]. J Electrochem Soc, 1980, 127 (2): 303-307. [2] Mauritz K A, Moore R B. State of understanding of Nafion[J]. Chem Rev, 2004, 104 (10): 4535-4585. [3] Kreuer K D, Schuster M, Obliers B, et al. Short-side-chain proton conducting perfluorosulfonic acid ionomers: Why they perform better in PEM fuel cells[J]. J Power Sources, 2008, 178 (2): 499-509. [4] Curtin D E, Lousenberg R D, Henry T J, et al. Advanced materials for improved PEMFC performance and life[J]. J Power Sources, 2004, 131 (1-2): 41-48. [5] Yu W S, Ge Z J, Zhang K, et al. Development of a high-performance proton exchange membrane: From structural optimization to quantity production[J]. Ind Eng Chem Res, 2022, 61(12): 4329-4338. [6] Marx C L, Caulfield D F, Cooper S L. Morphology of ionomers[J]. Macromolecules, 1973, 6 (3): 344-353. [7] Macknight W J, Taggart W P, Stein R S. A model for the structure of ionomers[J]. J Polym Sci: Polym Sym, 2007,45 (1): 113-128. [8] Yeager H. L, Steck A. Cation and water diffusion in Nafion ion exchange membranes: Influence of polymer structure[J]. J Electrochem Soc, 1981, 128: 1880-1884. [9] Gierke T D, Munn G E, Wilson F C. The morphology in Nafion perfluorinated membrane products, as determined by wide-and small-angle X-ray studies[J]. J Polym Sci B Polym Phys, 1981, 19 (11): 1687-1704. [10] Starkweather H W. Crystallinity in perfluorosulfonic acid ionomers and related polymers[J]. Macromolecules, 1982, 15 (2): 320-323. [11] Dreyfus B, Gebel G, Aldebert P, et al. Small-angle neutron scattering of perfluorosulfonated ionomers in solution[J]. Appl Environ Microb, 1986, 19(10):1720-1723. [12] Litt M H. Reevaluation of Nafion morphology[J]. Polym Prepr, 1997, 38 (1): 80-81. [13] Rubatat L, Rollet A L, Diat O, et al. Evidence of elongated polymeric aggregates in Nafion[J]. Macromolecules, 2002, 35 (10): 4050-4055. [14] Haubold H G, Vad T, Jungbluth H, et al. Nano structure of Nafion: A SAXS study[J]. Electrochim Acta, 2001, 46 (10): 1559-1563. [15] Kusoglu A, Weber A Z. New insights into perfluorinated sulfonic-acid ionomers[J]. Chem Rev, 2017, 117(3):987. [16] Barnett A, Lu J, Molinero V. Width and clustering of ion-conducting channels in fuel cell membranes are insensitive to the length of ion tethers[J]. J Phys Chem C, 2021, 125 (50): 27693-27702. [17] Hsu W Y, Gierke T D. Ion transport and clustering in Nafion perfluorinated membranes[J]. J Membr Sci, 1983, 13 (3): 307-326. [18] Eisenberg A, Hird B, Moore R B. New multiplet-cluster model for the morphology of random ionomers [J]. Macromolecules,1990, 23 (18): 4098-4107. [19] Fujimura M, Hashimoto T, Kawai H. Small-angle X-ray scattering study of perfluorinated ionomer membranes. 1. Origin of two scattering maxima[J]. Macromolecules, 1981, 14 (5): 1309-1315. [20] Fujimura M, Hashimoto T, Kawai H. Small-angle X-ray scattering study of perfluorinated ionomer membranes. 2. Models for ionic scattering maximum[J]. Macromolecules, 1982, 15(1): 136-144. [21] Roche E J, Pineri M, Duplessix R, et al. Small-angle scattering studies of Nafion membranes[J]. J Polym Sci B Polym Phys, 1981, 19, 1-11. [22] Roche E J, Pineri M, Duplessix R. Phase separation in perfluorosulfonate ionomer membranes[J]. J Polym Sci Polymr Phys Ed, 1982, 20, 107-116. [23] Kim M H, Glinka C J, Grot S A, et al. SANS study of the effects of water vapor sorption on the nanoscale structure of perfluorinated sulfonic acid (Nafion) membranes[J]. Macromolecules, 2006, 39 (14): 4775-4787. [24] Aldebert P, Dreyfus B, Pineri M. Small-angle neutron scattering of perfluorosulfonated ionomers in solution[J]. Appl Environ Microb, 1986, 19 (10): 2651-2653. [25] Fujinami S, Hoshino T, Nakatani T, et al. Morphological changes of hydrophobic matrix and hydrophilic ionomers in water-swollen perfluorinated sulfonic acid membranes detected using small-angle X-ray scattering[J]. Polymer, 2019, 180: 121699. [26] Kusoglu A, Savagatrup S, Clark K T, et al. Role of mechanical factors in controlling the structure-function relationship of PFSA ionomers[J]. Macromolecules, 2012, 1 (18): 7467-7476. [27] Rebrov A V,Ozerin A N,Svergun D I,et al. Small-angle X-ray scatter study of the aggregation of macromolecules of the perfluorosulphonated ionomer in solution[J]. Polym Sci U S S R, 1990, 32 (8):1515-1521. [28] Moore R B, Martin C R. Procedure for preparing solution-cast perfluorosulfonate ionomer films and membranes[J]. Anal Chem, 1986, 58 (12): 2569-2570. [29] Moore R B, Martin C R. Morphology and chemical properties of the Dow perfluorosulfonate ionomers[J]. Macromolecules, 1989, 22 (9): 3594-3599. [30] Gebel G, Moore R B. Small-angle scattering study of short pendant chain perfuorosulfonated ionomer membranes[J]. Macromolecules, 2000, 33 (13): 4850-4855. [31] Halim J, Scherer G G, Stamm M. Characterization of perfluorosulfonic acid membranes by conductivity measurements and small-angle X-ray scattering[J]. Macromol Chem Phys, 1994, 195 (12): 3783-3788. [32] Weber A Z, Borup R L, Darling R M, et al. A critical review of modeling transport phenomena in polymer-electrolyte fuel cells[J]. J Electrochem Soc, 2014, 161(12):F1254-F1299.. [33] Qiao Z, Carro N, Ryu H Y, et al. Sorption and transport of methanol and ethanol in H+-nation[J]. Polymer, 2012, 53 (6): 1267-1276. [34] Longendyke G K, Katel S, Wang Y X. Effects of dominant material properties on the stability and transport of TiO2 nanoparticles and carbon nanotubes in aquatic environments: from synthesis to fate[J]. Environ Sci Process Impacts, 2012, 15(1):169-189. [35] Coms F D, Fuller T J, Schaffer C P. A mechanistic study of perfluorosulfonic acid membrane water permeance degradation in air[J]. J Electrochem Soc, 2018, 165(6):F3104-F3110. [36] Baker A M, Crothers A R, Chintam K, et al. Morphology and transport of multivalent cation-exchanged ionomer membranes using perfluorosulfonic acid-Ce2+ as a model system[J]. ACS Appl Polym Mater, 2020, 2(8):3642-3656. [37] Onishi L M, Prausnitz J M, Newman J. Steady-state diffusion coefficients for water in Nafion in the absence of inert gas[J]. J Electrochem Soc, 2012, 159 (6): B754-B760. [38] Hussey D S, Spernjak D, Weber A Z, et al. Accurate measurement of the through-plane water content of proton-exchange membranes using neutron radiography[J]. J Appl Phys, 2012, 112 (10): 297-302. [39] Ferrari M C, Catalano J, Baschetti M G, et al. FTIR-ATR study of water distribution in a short-side-chain PFSI membrane[J]. Macromolecules, 2012, 45 (4): 1901-1912. [40] Kusoglu A, Modestino M A, Hexemer A, et al. Sub-second morphological changes in Nafion during water uptake detected by small-angle X-ray scattering[J]. ACS Macro Lett, 2012, 1 (1): 33-36. [41] Mukaddam M, Wang Y, Pinnau I. Structural, thermal, and gas-transport properties of Fe3+ ion-exchanged Nafion membranes[J]. ACS Omega, 2018, 3 (7): 7474-7482. [42] Sun Y Y, Cui L R, Gong J, et al. Core-shell HA-AuNPs@SiNPs nanoprobe for sensitive fluorescence hyaluronidase detection and cell imaging[J]. ACS Sustain Chem Eng, 2019, 7 (3): 2955-2963. [43] He Q, Kusoglu A, Lucas I T, et al. Correlating humidity-dependent ionically conductive surface area with transport phenomena in proton-exchange membranes[J]. J Phys Chem B, 2011, 115 (40): 11650-11657. [44] Jiang R C, Mittelsteadt C K, Gittleman C S. Through-plane proton transport resistance of membrane and ohmic resistance distribution in fuel cells[J]. J Electrochem Soc, 2009, 156 (12): B1440-B1446. [45] Cooper K R. Characterizing through-plane and in-plane ionic conductivity of polymer electrolyte membranes[J]. ECS Transactions, 2011, 41 (1): 1371-1380. [46] Moukheiber E, Moor G D, Flandin L, et al. Investigation of ionomer structure through its dependence on ion exchange capacity (IEC) [J]. J Membr Sci,2012, 389: 294-304. [47] Jain S K, Rawlings D, Antoine S, et al. Diffuse interface between polymers: Structure and kinetics[J]. J Polym Sci B Polym Phys, 2011, 50 (1): 9-20. [48] Ueki, T; Watanabe, M. Macromolecules in ionic liquids: Progress, challenges, and opportunities[J]. Macromolecules, 2008, 41, 3739-3749. [49] Kreuer K D, Paddison S J, Spohr E, et al. Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions and phenomenology[J]. Chem Rev, 2004, 104 (10): 4637-4678. [50] Agmon N. The Grotthuss mechanism[J]. Chem Phys Lett,1995,244:456-462. [51] Choe Y K, Tsuchida E, Ikeshoji T, et al. Nature of water transport and electro-osmosis in Nafion: Insights from first-principles molecular dynamics simulations under an electric field[J]. J Phys Chem B, 2008, 112 (37): 11586-11594. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号