面向二氧化碳电化学利用的 离子传导膜研究进展
作者:严亚博,林建龙,许一寒,陈箫屹,张生
单位: 教育部绿色合成与转化重点实验室,天津大学 化工学院,天津 300072
关键词: 离子传导膜;CO2电化学转化;离子电导率;催化剂;膜电极
DOI号:
分类号: TQ151.5
出版年,卷(期):页码: 2023,43(6):191-211

摘要:
利用可再生电力将化石能源利用过程中排放的CO2还原为增值含碳化学品,不仅可以解决CO2排放问题,还可以实现可再生能源存储,是实现我国“双碳”目标的重要途径。离子传导膜作为CO2电解池中的重要组成部分,一方面其离子电导率决定了电能到化学能的转化效率;另一方面对不同离子的选择性和渗透性极大地影响了阴极催化剂反应微环境,进而影响了CO2电催化还原性能和电极稳定性。本文总结了近些年包括室温离子交换膜、中高温耐热高分子膜和固体氧化物膜的不同离子传导膜在电催化CO2转化中的应用,介绍了不同离子传导膜对CO2还原反应、电极稳定性、产物收集等方面的影响,提出了不同离子传导膜在CO2电还原转化利用过程中存在的问题与挑战,并给出了相应解决策略,最后对未来离子膜在CO2电化学转化利用领域的研究进行了展望。
Using renewable electricity to reduce carbon dioxide emitted during the utilization of fossil energy into value-added carbon-containing chemicals can solve the problem of carbon dioxide emissions and realize the storage of renewable energy. This technique is an important way to achieve China’s carbon peaking and carbon neutrality goals. On one hand, as an important component of the CO2 electrolysis cell, the ion conductivity of the ion conductive membrane determines the conversion efficiency from electrical energy to chemical energy. On the other hand, the selectivity and permeability of different ions greatly affect the reaction microenvironment of the cathode catalyst, thereby affecting the CO2 electrocatalytic reduction performance and electrode stability. In this paper, we summarized the applications of different ion-conducting membranes in CO2RR in recent years, including ion-exchange membranes at room temperature, heat-resistant polymer and solid oxide membranes at medium and high temperatures. We introduced the effects of different ion-conducting membranes on CO2 reduction reaction, electrode Stability and product collection. The problems and challenges of different ion-conducting membranes in CO2 reduction process were put forward, while some solutions were also given. Finally, the future prospect of membrane in electrocatalytic CO2 was discussed.

基金项目:
国家自然科学基金项目(21938008,22078232)和天津市科技重大专项(19ZXNCGX00030,20JCYBJC00870)

作者简介:
严亚博,男,2001,陕西省宝鸡市人,从事二氧化碳电化学转化与过程强化方面研究

参考文献:
[1] Lin Q, Zhang X, Wang T, et al. Technical perspective of carbon capture, utilization, and storage[J]. Engineering, 2022, 14: 27-32.
[2] Cheng Y, Hou P, Wang X, et al. CO2 electrolysis system under industrially relevant conditions[J]. Acc Chem Res, 2022, 55(3): 231-240.
[3] Kuang S, Su Y, Li M, et al. Asymmetrical electrohydrogenation of CO2 to ethanol with copper-gold heterojunctions[J]. Proc Natl Acad Sci U S A, 2023, 120(4): e2214175120.
[4] Zhang S, Fan Q, Xia R, et al. CO2 Reduction: From homogeneous to heterogeneous electrocatalysis[J]. Acc Chem Res, 2020, 53(1): 255-264.
[5] Chen L, Shi G, Shen J. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550(7676): 380-383.
[6] Karan S, Jiang Z, Livingston A G. Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241): 1347-1351.
[7] Lin J, Dang J, Zhou G, et al. Sheet-dot-framework membrane towards efficient proton conduction and outstanding stability[J]. Journal of Materials Chemistry A, 2020, 8(21): 10822-10830.
[8] Yang L, Qian S, Wang X, et al. Energy-efficient separation alternatives: Metal–organic frameworks and membranes for hydrocarbon separation[J]. Chemical Society Reviews, 2020, 49(15): 5359-5406.
[9] Nguyen T N, Dinh C T. Gas diffusion electrode design for electrochemical carbon dioxide reduction[J]. Chem Soc Rev, 2020, 49(21): 7488-7504.
[10] Lees E W, Mowbray B A W, Parlane F G L, et al. Gas diffusion electrodes and membranes for CO2 reduction electrolysers[J]. Nature Reviews Materials, 2021, 7(1): 55-64.
[11] Weng L, Bell A T, Weber A Z. Towards membrane-electrode assembly systems for CO2 reduction: A modeling study[J]. Energy & Environmental Science, 2019, 12(6): 1950-1968.
[12] Ran J, Wu L, He Y, et al. Ion exchange membranes: New developments and applications[J]. Journal of Membrane Science, 2017, 522: 267-291.
[13] Jiang S, Sun H, Wang H, et al. A comprehensive review on the synthesis and applications of ion exchange membranes[J]. Chemosphere, 2021, 282: 130817.
[14] Luo T, Abdu S, Wessling M. Selectivity of ion exchange membranes: A review[J]. Journal of Membrane Science, 2018, 555: 429-454.
[15] Xu T, Wu D, Wu L. Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)—A versatile starting polymer for proton conductive membranes (PCMs)[J]. Progress in Polymer Science, 2008, 33(9): 894-915.
[16] Ran J, Wu L, Ru Y, et al. Anion exchange membranes (AEMs) based on poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and its derivatives[J]. Polymer Chemistry, 2015, 6(32): 5809-5826.
[17] Pärnamäe R, Mareev S, Nikonenko V, et al. Bipolar membranes: A review on principles, latest developments, and applications[J]. Journal of Membrane Science, 2021, 617: 118538.
[18] Peckham T J, Holdcroft S. Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes[J]. Adv Mater, 2010, 22(42): 4667-4690.
[19] Agmon N. The Grotthuss mechanism[J]. Chemical Physics Letters, 1995, 244(5-6): 456-462.
[20] Eikerling M, Kornyshev A A. Proton transfer in a single pore of a polymer electrolyte membrane[J]. Journal of Electroanalytical Chemistry, 2001, 502(1): 1-14.
[21] Schmitt U W, Voth G A. The computer simulation of proton transport in water[J]. The Journal of Chemical Physics, 1999, 111(20): 9361-9381.
[22] Tuckerman M E, Marx D, Parrinello M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution[J]. Nature, 2002, 417(6892): 925-929.
[23] Tanaka Y. Ion exchange membranes: Fundamentals and applications [M]. The Netherlands: Elsevier Science, 2015: 1-500.
[24] Shin D W, Guiver M D, Lee Y M. Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability[J]. Chem Rev, 2017, 117(6): 4759-4805.
[25] Yin Z, Peng H, Wei X, et al. An alkaline polymer electrolyte CO2 electrolyzer operated with pure water[J]. Energy & Environmental Science, 2019, 12(8): 2455-2462.
[26] Huang J E, Li F, Ozden A, et al. CO2 electrolysis to multicarbon products in strong acid[J]. Science, 2021, 372(6546): 1074-1078.
[27] Aeshala L M, Uppaluri R, Verma A. Electrochemical conversion of CO2 to fuels: Tuning of the reaction zone using suitable functional groups in a solid polymer electrolyte[J]. Phys Chem Chem Phys, 2014, 16(33): 17588-17594.
[28] Dinh C-T, Burdyny T, Kibria M G, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018, 360(6390): 783-787.
[29] Gabardo C M, O’Brien C P, Edwards J P, et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly[J]. Joule, 2019, 3(11): 2777-2791.
[30] Kutz R B, Chen Q, Yang H, et al. Sustainion imidazolium‐functionalized polymers for carbon dioxide electrolysis[J]. Energy Technology, 2017, 5(6): 929-936.
[31] Liu Z, Yang H, Kutz R, et al. CO2 Electrolysis to CO and O2 at high selectivity, stability and efficiency using sustainion membranes[J]. Journal of the Electrochemical Society, 2018, 165(15): J3371-J3377.
[32] Salvatore D A, Gabardo C M, Reyes A, et al. Designing anion exchange membranes for CO2 electrolysers[J]. Nature Energy, 2021, 6(4): 339-348.
[33] Larrazabal G O, Strom-Hansen P, Heli J P, et al. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-Type electrolyzer[J]. ACS Appl Mater Interfaces, 2019, 11(44): 41281-41288.
[34] Zhang J, Luo W, Züttel A. Crossover of liquid products from electrochemical CO2 reduction through gas diffusion electrode and anion exchange membrane[J]. Journal of Catalysis, 2020, 385: 140-145.
[35] Kim J Y T, Zhu P, Chen F-Y, et al. Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor[J]. Nature Catalysis, 2022, 5(4): 288-299.
[36] Endr?di B, Kecsenovity E, Samu A, et al. High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell[J]. Energy & Environmental Science, 2020, 13(11): 4098-4105.
[37] He G, Zhang R, Jiang Z. Engineering covalent organic framework membranes[J]. Accounts of Materials Research, 2021, 2(8): 630-643.
[38] Zhang C, Wu B H, Ma M Q, et al. Ultrathin metal/covalent-organic framework membranes towards ultimate separation[J]. Chem Soc Rev, 2019, 48(14): 3811-3841.
[39] Kenneth A M, Robert B M. State of understanding of nafion[J]. Chemical Reviews, 2004, 104(10): 4535-4586.
[40] Souzy R, Ameduri B. Functional fluoropolymers for fuel cell membranes[J]. Progress in Polymer Science, 2005, 30(6): 644-687.
[41] Charles D, Paul L R, John B K, et al. Design of an electrochemical cell making syngas  ( CO + H2 )  from CO2 and H2O reduction at room temperature[J]. Journal of the Electrochemical Society, 2008, 155(1): B42.
[42] Lee S, Ju H, Machunda R, et al. Sustainable production of formic acid by electrolytic reduction of gaseous carbon dioxide[J]. Journal of Materials Chemistry A, 2015, 3(6): 3029-3034.
[43] Ma L, Fan S, Zhen D, et al. Electrochemical reduction of CO2 in proton exchange membrane reactor: The function of buffer layer[J]. Industrial & Engineering Chemistry Research, 2017, 56(37): 10242-10250.
[44] Liu H, Su Y, Liu Z, et al. Tailoring microenvironment for enhanced electrochemical CO2 reduction on ultrathin tin oxide derived nanosheets[J]. Nano Energy, 2023, 105: 108031.
[45] O’Brien C P, Miao R K, Liu S, et al. Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration[J]. ACS Energy Letters, 2021, 6(8): 2952-2959.
[46] Gu J, Liu S, Ni W, et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium[J]. Nature Catalysis, 2022, 5(4): 268-276.
[47] Qiao Y, Lai W, Huang K, et al. Engineering the local microenvironment over bi nanosheets for highly selective electrocatalytic conversion of CO2 to HCOOH in strong acid[J]. ACS Catalysis, 2022, 12(4): 2357-2364.
[48] Ripatti D S, Veltman T R, Kanan M W. Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion[J]. Joule, 2019, 3(1): 240-256.
[49] Xu Z, Wan L, Liao Y, et al. Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm-2[J]. Nat Commun, 2023, 14(1): 1619.
[50] Blommaert M A, Sharifian R, Shah N U, et al. Orientation of a bipolar membrane determines the dominant ion and carbonic species transport in membrane electrode assemblies for CO2 reduction[J]. J Mater Chem A Mater, 2021, 9(18): 11179-11186.
[51] Chen Y, Vise A, Klein W E, et al. A robust, scalable platform for the electrochemical conversion of CO2 to formate: Identifying pathways to higher energy efficiencies[J]. ACS Energy Letters, 2020, 5(6): 1825-1833.
[52] Salvatore D A, Weekes D M, He J, et al. Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane[J]. ACS Energy Letters, 2017, 3(1): 149-154.
[53] Li Y C, Yan Z, Hitt J, et al. Bipolar membranes inhibit product crossover in CO2 electrolysis cells[J]. Advanced Sustainable Systems, 2018, 2(4): 1700187. 
[54] Li Y C, Zhou D, Yan Z, et al. Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells[J]. ACS Energy Letters, 2016, 1(6): 1149-1153.
[55] Vermaas D A, Smith W A. Synergistic electrochemical CO2 reduction and water oxidation with a bipolar membrane[J]. ACS Energy Letters, 2016, 1(6): 1143-1148.
[56] Yan Z, Hitt J L, Zeng Z, et al. Improving the efficiency of CO2 electrolysis by using a bipolar membrane with a weak-acid cation exchange layer[J]. Nat Chem, 2021, 13(1): 33-40.
[57] Lees E W, Goldman M, Fink A G, et al. Electrodes designed for converting bicarbonate into CO[J]. ACS Energy Letters, 2020, 5(7): 2165-2173.
[58] Li T, Lees E W, Goldman M, et al. Electrolytic conversion of bicarbonate into CO in a flow cell[J]. Joule, 2019, 3(6): 1487-1497.
[59] Li T, Lees E W, Zhang Z, et al. Conversion of bicarbonate to formate in an electrochemical flow reactor[J]. ACS Energy Letters, 2020, 5(8): 2624-2630.
[60] Li Y C, Lee G, Yuan T, et al. CO2 electroreduction from carbonate electrolyte[J]. ACS Energy Letters, 2019, 4(6): 1427-1431.
[61] Fan L, Xia C, Zhu P, et al. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor[J]. Nat Commun, 2020, 11(1): 3633.
[62] Xia C, Zhu P, Jiang Q, et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices[J]. Nature Energy, 2019, 4(9): 776-785.
[63] Yang H, Kaczur J J, Sajjad S D, et al. Electrochemical conversion of CO2 to formic acid utilizing sustainion™ membranes[J]. Journal of CO2 Utilization, 2017, 20: 208-217.
[64] Yang H, Kaczur J J, Sajjad S D, et al. Performance and long-term stability of CO2 conversion to formic acid using a three-compartment electrolyzer design[J]. Journal of CO2 Utilization, 2020, 42: 101349.
[65] Hu J, Qu T, Liu Y, et al. Core–shell-structured CNT@hydrous RuO2 as a H2/CO2 fuel cell cathode catalyst to promote CO2 methanation and generate electricity[J]. Journal of Materials Chemistry A, 2021, 9(12): 7617-7624.
[66] Jia S, Matsuda S, Tamura S, et al. Study of CO2 reduction at Pt-Ru electrocatalyst in polymer electrolyte cell by differential electrochemical mass spectrometry and liquid chromatography[J]. Electrochimica Acta, 2018, 261: 340-345.
[67] Liu Y, Li Y, Chen Y, et al. A CO2/H2 fuel cell: Reducing CO2 while generating electricity[J]. Journal of Materials Chemistry A, 2020, 8(17): 8329-8336.
[68] Niitsuma Y, Sato K, Matsuda S, et al. CO2 reduction performance of Pt-Ru/C electrocatalyst and its power generation in polymer electrolyte fuel cell[J]. Journal of the Electrochemical Society, 2019, 166(4): F208-F213.
[69] Umeda M, Sato M, Maruta T, et al. Is power generation possible by feeding carbon dioxide as reducing agent to polymer electrolyte fuel cell?[J]. Journal of Applied Physics, 2013, 114(17): 174908.
[70] Haider R, Wen Y, Ma Z F, et al. High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies[J]. Chem Soc Rev, 2021, 50(2): 1138-1187.
[71] Mogg L, Hao G P, Zhang S, et al. Atomically thin micas as proton-conducting membranes[J]. Nat Nanotechnol, 2019, 14(10): 962-966.
[72] Ebbesen S D, Mogensen M. Electrolysis of carbon dioxide in solid oxide electrolysis cells[J]. Journal of Power Sources, 2009, 193(1): 349-358.
[73] Singh V, Muroyama H, Matsui T, et al. Feasibility of alternative electrode materials for high temperature CO2 reduction on solid oxide electrolysis cell[J]. Journal of Power Sources, 2015, 293: 642-648.
[74] Yue X, Irvine J T S. Alternative cathode material for CO2 reduction by high temperature solid oxide electrolysis cells[J]. Journal of the Electrochemical Society, 2012, 159(8): F442-F448.
[75] Zhan Z, Zhao L. Electrochemical reduction of CO2 in solid oxide electrolysis cells[J]. Journal of Power Sources, 2010, 195(21): 7250-7254.
[76] Küngas R. Review-electrochemical CO2 reduction for CO production: Comparison of low- and high-temperature electrolysis technologies[J]. Journal of the Electrochemical Society, 2020, 167: 044508.
[77] Zhang L, Hu S, Zhu X, et al. Electrochemical reduction of CO2 in solid oxide electrolysis cells[J]. Journal of Energy Chemistry, 2017, 26(4): 593-601.
[78] Ding L, Wei Y, Wang Y, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angew Chem Int Ed Engl, 2017, 56(7): 1825-1829.
[79] Qiao Z, Zhao S, Wang J, et al. A highly permeable aligned montmorillonite mixed-matrix membrane for CO2 separation[J]. Angew Chem Int Ed Engl, 2016, 55(32): 9321-9325.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号