疏水膜、疏水性能评价及其自发脱水干燥
作者:吕晓龙,谷杰
单位: 1膜材料与膜应用国家重点实验室,天津膜天膜科技股份有限公司,天津300457; 2省部共建分离膜与膜过程国家重点实验室,材料科学与工程学院,生物化工研究所,天津工业大学,天津 300387
关键词: 疏水膜,临界润湿值,透水压力,疏水膜干燥,自发脱水
DOI号:
分类号: TQ028
出版年,卷(期):页码: 2024,44(1):1-7

摘要:
介绍了多孔疏水膜的定义、临界润湿值的概念、疏水膜的透水压力值和临界润湿值测试方法。区别于通常的外力加热等方法,介绍了利用疏水膜材料自身特性来实现疏水膜干燥的两种疏水膜自脱水干燥的方法。一种方法是控制膜污染润湿进程,当膜孔被润湿的深度小于该疏水膜材料的临界润湿值时,通过膜清洗实现疏水膜的自发脱水干燥。另一种方法是构建亲疏水双层复合疏水膜,当膜运行至产水电导率明显上升时,停机清洗,利用亲水材料与水之间的吸引力大于疏水材料与水之间的吸引力的特性使疏水膜孔自发脱水干燥。
This article introduces the definition of porous hydrophobic membranes, the concept of critical wetting value, the permeability pressure value of hydrophobic membranes, and the testing method of critical wetting value. Different from the usual methods such as external heating, this article introduces two methods of self dehydration and drying of hydrophobic membranes by utilizing the inherent characteristics of hydrophobic membrane materials. One method is to control the wetting process of membrane fouling. When the depth of membrane pores being wetted is less than the critical wetting value of the hydrophobic membrane material, membrane cleaning is used to achieve spontaneous dehydration and drying of the hydrophobic membrane. Another method is to construct a hydrophilic and hydrophobic bilayer composite hydrophobic membrane. When the membrane runs until the conductivity of the produced water increases significantly, it is shut down for cleaning. By utilizing the characteristic that the adhesion between hydrophilic materials and water is greater than that between hydrophobic materials and water, the hydrophobic membrane pores are spontaneously dehydrated and dried.

基金项目:
基金项目:天津市高等学校新型膜材料及膜分离技术创新团队(No. TD13-5044);国家自然科学基金(21176188)

作者简介:
吕晓龙(1964-),男,山西忻州人,教授,研究方向为分离膜制备与应用。E-mail:13920286131@163.com

参考文献:
[1] A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: A comprehensive review[J]. Desalination, 2012, 287:2-18.
 
[2] H. Chamani, J. Woloszyn, T. Matsuura, et al. Pore wetting in membrane distillation: A comprehensive review[J]. Prog. Mater Sci, 2021, 122:100843.
 
[3] D. Bhaumik, S. Majumdar, Q. Fan, et al. Hollow fiber membrane degassing in ultrapure water and micro-biocontamination[J]. J Membr. Sci, 2004, 235(1/2):31-41.
 
[4] M. Zhao, Y. Liu, J. Zhang, et al. Janus ceramic membranes with asymmetric wettability for high-efficient microbubble aeration[J]. J Membr. Sci, 2023, 671:121418.
 
[5] F. Zhou, H.N. Tien, W.L. Xu, et al. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO(2)-philic agent for highly efficient CO(2) capture[J]. Nat Commun, 2017, 8(1).
 
[6] P. Xu, M. Qiu, K. Fu, et al. Enhancing performance of ceramic membrane in CO2 membrane absorption: Single-to multi-channel[J]. J Membr. Sci, 2023, 687:122013.
 
[7] 中华人民共和国国家市场监督管理总局. GB/T 42270-2022, 多孔疏水膜的疏水性能测试方法[S]. 北京: 中国标准出版社, 2023.
 
[8] R.B. Saffarini, B. Mansoor, R. Thomas, et al. Effect of temperature-dependent microstructure evolution on pore wetting in PTFE membranes under membrane distillation conditions[J]. J Membr. Sci, 2013, 429:282-294.
 
[9] A. Samadi, T. Ni, E. Fontananova, et al. Engineering antiwetting hydrophobic surfaces for membrane distillation: A review[J]. Desalination, 2023, 563.
 
[10] M. Rezaei, D.M. Warsinger, V.J. Lienhard, et al. Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention[J]. Water Res, 2018, 139:329-352.
 
[11] M.C. Garcia-Payo, M.A. Izquierdo-Gil, C. Fernandez-Pineda, Wetting Study of Hydrophobic Membranes via Liquid Entry Pressure Measurements with Aqueous Alcohol Solutions[J]. J Colloid Interface Sci, 2000, 230(2):420-431.
 
[12] A.G. Fane, R. Wang, M.X. Hu, Synthetic membranes for water purification: status and future[J]. Angew. Chem. Int. Ed. Engl, 2015, 54(11):3368-3386.
 
[13] 吕晓龙. 疏水膜的污染、润湿与干燥探讨[J]. 膜科学与技术, 2020, 40(1):196-203.
 
[14] W. Zhou, Y. Chen, X. He, et al. Mechanistic insights to the reversibility of membrane wetting in membrane distillation[J]. J Membr. Sci, 2023, 685:121958.
 
[15] D. M. Warsinger, A. Servi, G. B. Connors, et al. Reversing membrane wetting in membrane distillation: comparing dry-out to backwashing with pressurized air[J]. Environmental Science: Water Research & Technology, 2017, 3(5):930-939.
 
[16] 袁娅,PVDF疏水膜润湿进程控制[D], 天津: 天津工业大学, 2017.
 
[17] 程认认,吕晓龙*,武春瑞,等. 疏水膜材料的膜孔润湿与干燥研究[J]. 功能材料, 2015, 46(22),22108-22112.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号