部分碳化PTFE/PVDF中空纤维膜的制备及油水分离性能研究 |
作者:张紫莹,肖芬,盛明鑫,董永全 |
单位: 1 重金属污染物控制与资源化国家地方联合工程研究中心 南昌 330063 2 南昌航空大学环境与化学工程学院,南昌 330063 |
关键词: 油水分离;非溶剂致相转换-碳化;聚四氟乙烯;中空纤维膜 |
DOI号: |
分类号: TQ028.4 |
出版年,卷(期):页码: 2024,44(1):45-55 |
摘要: |
聚四氟乙烯(PTFE)是一种强疏水的氟碳材料,很难用相转化成膜。本文将PTFE粉体分散在聚偏氟乙烯(PVDF)溶液中得到PTFE悬浮液,首先用干湿相转化法制得PTFE/PVDF中空纤维膜胚;然后在氮气气氛下进行部分碳化,制得部分碳化PTFE/PVDF中空纤维膜。用热重分析法、X射线光电子能谱(XPS)和扫描电镜研究了PTFE/PVDF中空纤维膜胚的碳化工艺、膜碳化前后表面元素和微观结构变化情况;最后测试了膜的亲疏水变化和油水分离性能。结果表明:PTFE/PVDF中空纤维膜胚中的PVDF在360-450℃时发生C-H断裂,PTFE保持原结构,可以得到部分碳化PTFE/PVDF中空纤维膜。经部分碳化工艺制得的中空纤维膜孔径减小,形成连续、完整的微孔结构。当PTFE含量为40%时,碳化后制得的膜接触角达到102°,疏水性提高;对10%的模拟含油废水的渗透通量达到30 L?m-2?h-1 (跨膜压差:0.1MPa)、分离效率达到80%,呈现出较好的油水分离性能和商业应用价值。 |
The hydrophobic fluorocarbon material, polytetrafluoroethylene (PTFE), poses challenges in film formation through phase conversion. In this work, a PTFE suspension was obtained by dispersing PTFE powder in a polyvinylidene fluoride (PVDF) solution. Firstly, the PTFE/PVDF hollow fiber membrane embryo was prepared using a dry and wet phase conversion method. Subsequently, partial carbonization of the PTFE/PVDF hollow fiber membrane was achieved under a nitrogen atmosphere. The carbonization process of the membrane embryo, surface element and microstructure changes before and after membrane carbonization was studied using thermogravimetric analysis, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Finally, the changes in hydrophilicity and oil-water separation performance were evaluated for the membrane. The results revealed that PVDF within the PTFE/PVDF hollow fiber membrane embryo underwent C-H fracture at 360-450℃ while partially carbonizing the membrane structure. This led to a reduction in pore size and formation of a continuous and complete microporous structure within the partially carbonized hollow fiber membranes. With 40% PTFE content, after carbonization, the contact angle of the film reached 102° indicating increased hydrophobicity. Moreover, when tested with simulated oil-bearing wastewater containing 10% oil content, these membranes exhibited an impressive permeation flux of 30 L?m-2?h-1 (Transmembrane differential pressure 0.1MPa) along with an efficient separation efficiency reaching up to 80%. These results highlight their promising potential for commercial applications in effective oil-water separation. |
基金项目: |
作者简介: |
张紫莹(2000-),女,学生,江西萍乡人,硕士研究生,研究方向为膜法水处理方向,E-mail:1846384674@qq.com |
参考文献: |
[1] Wang Z X, Lau C H, Zhang N Q, et al. Mussel-inspired tailoring of membrane wettability for harsh water treatment[J]. Journal of Materials Chemistry A, 2015, 3(6): 2650-2657. [2] Rasouli S, Rezaei N, Hamedi H, et al. Superhydrophobic and superoleophilic membranes for oil-water separation application: A comprehensive review[J]. Materials & Design, 2021, 204: 109599. [3] Li X, Wang M, Wang C, et al. Facile immobilization of Ag nanocluster on nanofibrous membrane for oil/water separation[J]. ACS applied materials & interfaces, 2014, 6(17): 15272-15282. [4] Ma W, Zhao J, Oderinde O, et al. Durable superhydrophobic and superoleophilic electrospun nanofibrous membrane for oil-water emulsion separation[J]. Journal of colloid and interface science, 2018, 532: 12-23. [5] Li B, Qi B, Guo Z, et al. Recent developments in the application of membrane separation technology and its challenges in oil-water separation: A review[J]. Chemosphere, 2023: 138528. [6] He M, Wang J, Li H, et al. Super-hydrophobic film retards frost formation[J]. Soft Matter, 2010, 6(11): 2396-2399. [7] Feng S, Zhong Z, Wang Y, et al. Progress and perspectives in PTFE membrane: Preparation, modification, and applications[J]. Journal of membrane science, 2018, 549: 332-349. [8] Zhu H, Wang H, Wang F, et al. Preparation and properties of PTFE hollow fiber membranes for desalination through vacuum membrane distillation[J]. Journal of membrane science, 2013, 446: 145-153. [9] Wang M, Xu Z, Guo Y, et al. Engineering a superwettable polyolefin membrane for highly efficient oil/water separation with excellent self-cleaning and photo-catalysis degradation property[J]. Journal of membrane science, 2020, 611: 118409. [10] 焦阳. 亲水性聚乳酸分离膜的制备及其性能研究[D].哈尔滨工业大学, 2021. [11] Tong Y J, Zuo C J, Ding W L, et al. Sulfonic nanohydrogelled surface-modified microporous polyvinylidene fluoride membrane with excellent antifouling performance for treating water-oil separation of kitchen wastewater[J]. Journal of membrane science, 2021, 628(15): 119113. [12] Wang D, Liu F L, Zhang X Y, et al. A Janus facilitated transport membrane with asymmetric surface wettability and dense/porous structure: Enabling high stability and separation efficiency[J]. Journal of membrane science, 2021, 626(15): 119183. [13] Stengaard F F. Preparation of asymmetric microfiltration membranes and modification of their properties by chemical treatment[J]. Journal of Membrane Science, 1988, 36: 257-275. [14] Sternberg S. Process for grafting amino acid molecules onto preformed polymer surfaces and products prepared thereby: U.S. Patent 4,340,482[P]. 1982-7-20. [15] Zhao J, Shi L, Loh C H, et al. Preparation of PVDF/PTFE hollow fiber membranes for direct contact membrane distillation via thermally induced phase separation method[J]. Desalination, 2018, 430: 86-97. [16] Wang K Y, Chung T S, Gryta M. Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation[J]. Chemical Engineering Science, 2008, 63(9): 2587-2594. [17] Xu M, Cheng J, Du X, et al. Amphiphobic electrospun PTFE nanofibrous membranes for robust membrane distillation process[J]. Journal of Membrane Science, 2022, 641: 119876. [18] Tang H, Hao L, Chen J, et al. Surface modification to fabricate superhydrophobic and superoleophilic alumina membranes for oil/water separation[J]. Energy & Fuels, 2018, 32(3): 3627-3636. [19] Du C, Wang Z, Liu G, et al. One-step electrospinning PVDF/PVP-TiO2 hydrophilic nanofiber membrane with strong oil-water separation and anti-fouling property[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624: 126790. [20] Liu F, Hashim N A, Liu Y T, et al. Progress in the production and modification of PVDF membranes[J]. Journal of Membrane Science, 2011, 375: 1-27. [21] Su C L, Li Y P, Cao H B, et al. Novel PTFE hollow fiber membrane fabricated by emulsion electrospinning and sintering for membrane distillation[J]. Journal of Membrane Science, 2019, 586: 200-208. [22] Zhao P F, Soin N, Prashanthi K, et al. Emulsion Electrospinning of Polytetrafluoroethylene (PTFE) Nanofibrous Membranes for High-Performance Triboelectric Nanogenerators[J]. ACS applied materials & interfaces, 2018, 10(6): 5880-5891. [23] Huang Y, Xiao C, Huang Q, et al. Progress on polymeric hollow fiber membrane preparation technique from the perspective of green and sustainable development[J]. Chemical Engineering Journal, 2021, 403: 126295. [24] 陈利芳, 陆晓峰, 卞晓锴, 等. PVDF-g-PVP及PVDF/PVP 微滤膜的制备与表征[J]. 膜科学与技术, 2014, 34(2): 18-22. [25] Lisendra M, Muhammad R B, Vankelecom I F J. Gradual PVP leaching from PVDF/PVP blend membranes and its effects on membrane fouling in membrane bioreactors[J]. Separation and Purification Technology, 2019, 213(15): 276-282. [26] Dong Z Q, Ma X, Xu Z L, et al. Superhydrophobic PVDF–PTFE electrospun nanofibrous membranes for desalination by vacuum membrane distillation[J]. Desalination, 2014, 347: 175-183. [27] 杜梦帆. 疏水性PVDF中空纤维复合膜的制备及其CO2 吸收性能研究[D]. 南京大学, 2019. [28] Liu F, Hashim N A, Liu Y, et al. Progress in the production and modification of PVDF membranes[J]. Journal of membrane science, 2011, 375(1-2): 1-27. [29] Zhou T, Yao Y, Xiang R, et al. Formation and characterization of polytetrafluoroethylene nanofiber membranes for vacuum membrane distillation[J]. Journal of membrane science, 2014, 453: 402-408. [30] Xue Z, Cao Y, Liu N, et al. Special wettable materials for oil/water separation[J]. Journal of Materials Chemistry A, 2014, 2(8): 2445-2460. [31] Kang G, Cao Y. Application and modification of poly (vinylidene fluoride)(PVDF) membranes–a review[J]. Journal of membrane science, 2014, 463: 145-165. [32] Tang Y, Li N, Liu A, et al. Effect of spinning conditions on the structure and performance of hydrophobic PVDF hollow fiber membranes for membrane distillation[J]. Desalination, 2012, 287: 326-339. [33] Huang Y, Huang Q L, Liu H, et al. Preparation, characterization, and applications of electrospun ultrafine fibrous PTFE porous membranes[J]. Journal of Membrane Science, 2017, 523: 317-326. [34] 吕晓龙. 疏水膜的污染, 润湿与干燥探讨[J]. 膜科学与技术, 2020, 40(1): 196-203. [35] Teoh M M, Chung T S. Membrane distillation with hydrophobic macrovoid-free PVDF–PTFE hollow fiber membranes[J]. Separation and Purification Technology, 2009, 66(2): 229-236. [36] 孙怡坤, 李少萍. PTFE 表面枝接纳米 SiO2 制备高效除油的超疏水材料[J]. 石油炼制与化工, 2020, 51(8): 104-110. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号