PVDF膜接触器在电厂含氨废水处理中的应用研究
作者:吕佳慧,戴洁,施国忠,岑易,徐浩然,冯向东,张林
单位: 1. 浙江浙能技术研究院有限公司,浙江 杭州 311121;2. 浙江浙能镇海发电有限责任公司,浙江 宁波 315000;3. 工业新水源技术浙江省工程研究中心,浙江 杭州 311121;4. 浙江省火力发电高效节能与污染物控制技术研究重点实验室,浙江 杭州311121;5. 浙江大学化学工程与生物工程学院,浙江 杭州 310058
关键词: 关键词:膜接触器;含氨废水;燃煤电厂;脱氮通量;聚偏氟乙烯
DOI号:
分类号: X703
出版年,卷(期):页码: 2024,44(1):123-129

摘要:
 燃煤电厂含氨废水具有水量大、氨氮浓度高、水质波动大的特点,常规脱氨工艺处理困难。本文采用PVDF膜接触器处理燃煤电厂高浓含氨废水,考察了膜接触器类型、水侧流量、气侧真空度、气液接触面积、进水水质等因素对脱氮效率的影响。结果表明,基于PVDF膜接触器的气液分离工艺,能够将高浓含氨废水中的氨氮浓度由1250mg/L降至300mg/L以下;外压式和内压式膜接触器都有理想的应用效果;提高膜接触器水侧流量、气侧真空度能够有效提高NH3传质效率;增大传质膜面积能够显著提升循环液氨氮脱除率。提出了分离NH3在燃煤电厂的多种资源化回用途径,为膜接触器的工程化应用提供参考。
 The ammonia-containing wastewater from coal-fired power plants has the characteristics of large water volume, high ammonia-nitrogen concentration, and large water quality fluctuations, making conventional ammonia removal processes difficult to treat. In this paper, PVDF membrane contactor was used to treat high-concentration ammonia-containing wastewater from coal-fired power plants. The effects of membrane contactor type, water flow, gas vacuum, gas-liquid contact area and influent water quality on nitrogen removal efficiency were investigated. The results show that the gas-liquid separation process based on PVDF membrane contactors can reduce the concentration of ammonia nitrogen in high-concentration ammonia containing wastewater from 1250mg/L to below 300mg/L. Both external and internal pressure membrane contactors have ideal application effects; The mass transfer efficiency of NH3 can be effectively improved by increasing the flow rate of water side and the vacuum degree of air side; Increasing the mass transfer membrane area can significantly improve the removal rate of ammonia nitrogen in circulating liquid. Multiple resource utilization pathways for separating NH3 in coal-fired power plants have been proposed, which provides reference for the engineering application of membrane contactors.

基金项目:
浙江省“领雁”计划项目(2022C03048)。

作者简介:
吕佳慧(1991-),女,浙江绍兴人,工程师,研究方向为工业水处理技术研发

参考文献:
 [1]王怀林,云金明,吴欢等.膜分离技术在脱硫废水零排放处理中的应用研究[J].膜科学与技术,2018,38(06):105-110.
[2]Zhang C, Zhong L, Fu X, et al. Revealing Water Stress by the Thermal Power Industry in China Based on a High Spatial Resolution Water Withdrawal and Consumption Inventory[J]. Environ. Sci. Technol., 2016, 50, 4, 1642–1652.
[3]Chen Y, Zhang Q, Cai X,  et al. et al. Rapid Increase in China’s Industrial Ammonia Emissions: Evidence from Unit-Based Mapping[J]. Environ. Sci. Technol., 2022, 56 (6): 3375-3385.
[4]Umesh G, Gideon S, Veera G. Transitioning Wastewater Treatment Plants toward Circular Economy and Energy Sustainability[J]. ACS Omega, 2021, 6, 18, 11794–11803.
[5]Li Z, Chen H, Zhan L, et al. Review of Migration, Transformation, and Control of Volatile Components during Desulfurization Wastewater Evaporation: Advances and Perspectives[J]. Energy Fuels, 2023, 37, 20, 15248–15266.
[6]Ji B, Liu Y. Assessment of Microalgal-Bacterial Granular Sludge Process for Environmentally Sustainable Municipal Wastewater Treatment[J]. ACS EST Water, 2021, 1, 12, 2459–2469.
[7]Jiang H, Straub A, Karanikola V. Ammonia Recovery with Sweeping Gas Membrane Distillation: Energy and Removal Efficiency Analysis[J]. ACS EST Engg., 2022, 2, 4, 617–628.
[8]Aghdam E, Xiang Y, Ling L, et al. New Insights into Micropollutant Abatement in Ammonia-Containing Water by the UV/Breakpoint Chlorination Process[J]. ACS EST Water, 2021, 1, 4, 1025–1034.
[9]Huang H, Liu J, Xiao J, et al. Highly Efficient Recovery of Ammonium Nitrogen from Coking Wastewater by Coupling Struvite Precipitation and Microwave Radiation Technology[J]. ACS Sustainable Chem. Eng., 2016, 4, 7, 3688–3696.
[10]Nam N, Marc E, Mohammad M, Process Technology and Sustainability Assessment of Wastewater Treatment[J]. Ind. Eng. Chem. Res., 2023, 62, 3, 1195–1214.
[11]Manali D, Dipika J. Pharmaceutical Wastewater Remediation: A Review of Treatment Techniques[J]. Ind. Eng. Chem. Res., 2023, 62, 48, 20492–20505.
[12]陈卫文.膜吸收技术用于处理高氨氮废水的研究[J].膜科学与技术, 2016, 36(05), 95-100+105.
[13]Lies E, Kristien D, Chris D. How To Optimize the Membrane Properties for Membrane Distillation: A Review[J]. Ind. Eng. Chem. Res. 2016, 55, 35, 9333–9343.
[14]史艳阳,陈小乐,苗闪闪等.PVDF超疏水膜的研制及空气过滤初探[J].膜科学与技术,2023,43(05):12-19.
[15]Youhei Y, Kota M, Kensaku K. Preparation of Polyamide Thin-Film Composite Membranes Using Hydrophilic Hollow Fiber PVDF via the TIPS Process Modified by PVA Diffusion[J]. Ind. Eng. Chem. Res., 2019, 58, 47, 21691–21699.
[16]黄海波.脱氨膜工艺用于高氨氮沉钒废水处理升级改造[J].中国给水排水,2023,39(06):98-102.
[17]侯惠惠.膜吸收法处理高浓度氨氮废水研究[D].哈尔滨工业大学,2019.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号