面向膜蒸馏的抗润湿、抗污染、抗结垢新型膜研究进展 |
作者:王 超,赵 一,muhammad mujahid,任龙飞,邵嘉慧 |
单位: 上海交通大学,环境科学与工程学院,上海200240 |
关键词: 关键词:膜蒸馏;润湿;污染;结垢;新型膜 |
DOI号: |
分类号: 膜蒸馏(MD)作为一种有前景的高盐废水处理技术而受到 |
出版年,卷(期):页码: 2024,44(1):157-167 |
摘要: |
膜蒸馏(MD)作为一种有前景的高盐废水处理技术而受到广泛关注。然而,由于实际废水成分复杂,MD的实际应用面临膜润湿、膜污染和膜结垢三大关键挑战,易导致膜通量和选择性降低,甚至膜失效。本文首先简述不同种类污染物诱导的膜润湿、污染和结垢的特点及其形成原因。随后,重点介绍了目前抗润湿、抗污染、抗结垢新型膜的研究进展,包括超疏水膜、全疏膜、常规Janus膜和致密Janus膜的设计原则、抗性机理及其适用范围。此外,讨论了通过对进料预处理、操作条件调控的辅助手段以及膜再生来进一步保证MD长期运行的稳定性。 |
Membrane distillation (MD) has attracted widespread attention as a promising technology for high-salt wastewater treatment. However, due to the complexity of the actual wastewater composition, the practical application of MD still faces three key challenges: membrane wetting, membrane fouling and membrane scaling, which ultimately lead to reduction of membrane flux and selectivity, even membrane failure. In this study, the characteristics and causes of membrane wetting, fouling and scaling induced by different kinds of substances were briefly described. Subsequently, it focused on the current research progress of novel membranes against wetting, fouling, and scaling, including the design principles, resistance mechanisms and the application scopes. In addition, methods of pretreatment, operating condition regulation and membrane regeneration were also discussed to further ensure the long-term stability of MD. |
基金项目: |
作者简介: |
王超(1996-),浙江金华人,主要研究方向为膜蒸馏 |
参考文献: |
[1] Wang W, Du X, Vahabi H, et al. Trade-off in membrane distillation with monolithic omniphobic membranes[J]. Nat Commun, 2019, 10: 1–9. [2] Tong T, Elimelech M. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions[J]. Environ Sci Technol, 2016, 50: 6846–6855. [3] Asif M B, Fida. Z, Tufail A, et al. Persulfate oxidation-assisted membrane distillation process for micropollutant degradation and membrane fouling control[J]. Sep Purif Technol, 2019, 222: 321–331. [4] Chamani H, Woloszyn J, Matsuura T, et al. Pore wetting in membrane distillation: A comprehensive review[J]. Prog Mater Sci, 2021, 122(100843): 1-39. [5] Wang Z, Lin S. Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability[J]. Water Res, 2017, 112: 38–47. [6] Yao M, Tijing L D, Naidu G, et al. A review of membrane wettability for the treatment of saline water deploying membrane distillation[J]. Desalination, 2020, 479(114312): 1-22. [7] Chang H, Liu B, Zhang Z, et al. A critical review of membrane wettability in membrane distillation from the perspective of interfacial interactions[J]. Environ Sci Technol, 2021, 55: 1395–1418. [8] Wang Z, Chen Y, Sun X, et al. Mechanism of pore wetting in membrane distillation with alcohol vs. surfactant[J]. J Memb Sci, 2018, 559: 183–195. [9] Shi D, Gong T, Qing W, et al. Unique behaviors and mechanism of highly soluble salt-induced wetting in membrane distillation[J]. Environ Sci Technol, 2022, 56: 14788–14796. [10] Wang P, Cheng W, Zhang X, et al. Engineering a protective surface layer to resist membrane scaling and scale-induced wetting in membrane distillation for the treatment of hypersaline wastewater[J]. Chem Eng J, 2023, 452: 1–10. [11] Tijing L D, Chul Y, Choi J, et al. Fouling and its control in membrane distillation — A review[J]. J Memb Sci, 2015, 475: 215–244. [12] Zhu Z, Liu Z, Zhong L, et al. Breathable and asymmetrically superwettable Janus membrane with robust oil-fouling resistance for durable membrane distillation[J]. J Memb Sci, 2018, 563: 602–609. [13] Srisurichan S, Jiraratananon R, Fane A G. Humic acid fouling in the membrane distillation process. Desalination, 2005, 174: 63–72. [14] Chew N G P, Zhao S, Wang R. Recent advances in membrane development for treating surfactant- and oil-containing feed streams via membrane distillation[J]. Adv Colloid Interface Sci, 2019, 273(102022): 1-19. [15] Boo C, Hong S, Elimelech M. Relating organic fouling in membrane distillation to intermolecular adhesion forces and interfacial surface energies[J]. Environ Sci Technol, 2018, 52: 14198–14207. [16] Karanikola V, Boo C, Rolf J, et al. Engineered slippery surface to mitigate gypsum scaling in membrane distillation for treatment of hypersaline industrial wastewaters[J]. Environ Sci Technol, 2018, 52(24): 14362–14370 [17] Christie K S S, Yin Y, Lin S, et al. Distinct behaviors between gypsum and silica scaling in membrane distillation[J]. Environ Sci Technol, 2020, 54(1): 568-576. [18] Su C, Horseman T, Cao H, et al. Robust superhydrophobic membrane for membrane distillation with excellent scaling resistance[J]. Environ Sci Technol, 2019, 53(20): 11801-11809. [19] Alftessi S A, Othman M H D, Adam M R, et al, Omniphobic surface modification of silica sand ceramic hollow fiber membrane for desalination via direct contact membrane distillation[J]. Desalination, 2022, 532(115705): 1-13. [20] Afsari M, Shon H K, Tijing L D. Janus membranes for membrane distillation: Recent advances and challenges[J]. Adv Colloid Interface Sci, 2021, 289(102362): 1-22. [21] Rezaei M, Warsinger D M, Lienhard V J H, et al. Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention[J]. Water Res, 2018, 139: 329–352. [22] Qasim M, Samad I U, Darwish N A, et al. Comprehensive review of membrane design and synthesis for membrane distillation[J]. Desalination, 2021, 518(115168): 1-13. [23] Xiao Z, Zheng R, Liu Y, et al. Slippery for scaling resistance in membrane distillation?: A novel porous micropillared superhydrophobic surface[J]. Water Res, 2019, 155: 152–161. [24] Tan G, Xu D, Zhu Z, et al, Tailoring pore size and interface of superhydrophobic nanofibrous membrane for robust scaling resistance and flux enhancement in membrane distillation[J]. J Memb Sci, 2022, 658: 1-14. [25] Lu K J, Chen Y, Chung T S. Design of omniphobic interfaces for membrane distillation – A review[J]. Water Res, 2019, 162: 64–77. [26] Lee J, Boo C, Ryu W H, et al. Development of omniphobic desalination membranes using a charged electrospun nanofiber scaffold[J]. ACS Appl Mater Interfaces, 2016, 8: 11154–11161. [27] Li M, Cao Y, Zhang X. Hierarchically structured nanoparticle-free omniphobic membrane for high-performance membrane distillation[J]. Environ Sci Technol, 2023, 57: 5841–5851. [28] Meng L, Mansouri J, Li X, et al. Omniphobic membrane via bioinspired silicification for the treatment of RO concentrate by membrane distillation[J]. J Memb Sci, 2022, 647(120267): 61-70. [29] Song Q, Lin Y, Ueda T, et al. A zwitterionic copolymer-interlayered ultrathin nanofilm with ridge-shaped structure for ultrapermeable nanofiltration[J]. J Memb Sci, 2022, 657(120679): 1-12. [30] Tang M, Hou D, Ding C, et al. Anti-oil-fouling hydrophobic-superoleophobic composite membranes for robust membrane distillation performance[J]. Sci Total Environ, 2019, 696(133883): 1-14. [31] Wang Z, Hou D, Lin S. Composite membrane with underwater-oleophobic surface for anti-oil-fouling membrane distillation[J]. Environ Sci Technol, 2016, 50: 3866–3874. [32] Huang Y X, Wang Z, Jin J, et al. Novel Janus membrane for membrane distillation with simultaneous fouling and wetting resistance[J]. Environ Sci Technol, 2017, 51: 13304–13310. [33] Chen Y, Lu K J, Japip S, et al. Can composite Janus membranes with an ultrathin dense hydrophilic layer resist wetting in membrane distillation?[J]. Environ Sci Technol, 2020, 54: 12713–12722. [34] Chen Y, Lu K J, Gai W, et al. Nanofiltration-inspired Janus membranes with simultaneous wetting and fouling resistance for membrane distillation[J]. Environ Sci Technol, 2021, 55: 7654–7664. [35] Feng D, Chen Y, Wang Z, et al. Janus membrane with a dense hydrophilic surface layer for robust fouling and wetting resistance in membrane distillation: New insights into wetting resistance[J]. Environ Sci Technol, 2021, 55: 14156–14164. [36] Zhang N, Zhang J, Yang X, et al. Janus membrane with hydrogel-like coating for robust fouling and wetting resistance in membrane distillation, ACS Appl. Mater. Interfaces. 2023, 15: 19504–19513. [37] Wang C, Ma Z, Qiu Y, et al. Patterned dense Janus membranes with simultaneously robust fouling, wetting and scaling resistance for membrane distillation[J]. Water Res, 2023, 242 (120308): 78176-78187. [38] Yang X, Zhang N, Zhang J, et al. Nanocomposite hydrogel engineered janus membrane for membrane distillation with robust fouling, wetting, and scaling resistance[J]. Environ Sci Technol, 2023, 57: 15725−15735. [39] Jiang L, Chen L, Zhu L, et al. Minimize the trade-off between wetting resistance and water permeance in membrane distillation with ion-sieving coating layer[J]. Chem Eng J, 2021, 430(115268): 1-8. [40] Feng D, Li X, Wang Z. Comparison of omniphobic membranes and Janus membranes with a dense hydrophilic surface layer for robust membrane distillation[J]. J Memb Sci, 2022, 660(120858): 79-90. [41] Rajwade K, Barrios A C, Garcia-Segura S, et al. Pore wetting in membrane distillation treatment of municipal wastewater desalination brine and its mitigation by foam fractionation[J]. Chemosphere, 2020, 257: 127214. [42] Wang J, Qu D, Tie M, et al. Effect of coagulation pretreatment on membrane distillation process for desalination of recirculating cooling water[J]. Sep Purif Technol, 2008, 64: 108–115. [43] Gryta M. Fouling in direct contact membrane distillation process[J]. J Memb Sci, 2008, 325: 383–394. [44] Yin Y, Jeong N, Minjarez R, et al. Contrasting behaviors between gypsum and silica scaling in the presence of antiscalants during membrane distillation[J]. Environ Sci Technol, 2021, 55(8): 5335-5346. [45] Horseman T, Yin Y, Christie K S, et al. Wetting, scaling, and fouling in membrane distillation: state-of-the-art insights on fundamental mechanisms and mitigation strategies[J]. ACS ES&T Eng, 2021, 1: 117–140. [46] Qu D, Wang J, Wang L, et al. Integration of accelerated precipitation softening with membrane distillation for high-recovery desalination of primary reverse osmosis concentrate[J]. Sep Purif Technol, 2009, 67: 21–25. [47] Christie K S S, Horseman T, Wang R, et al. Gypsum scaling in membrane distillation: Impacts of temperature and vapor flux[J]. Desalination, 2022, 525 (115499): 1-11. [48] Gilron J, Ladizansky Y, Korin E. Silica fouling in direct contact membrane distillation[J]. Ind. Eng Chem Res, 2013, 52: 10521–10529. [49] Ricceri F, Blankert B, Ghaffour N, et al. Unraveling the role of feed temperature and cross-flow velocity on organic fouling in membrane distillation using response surface methodology[J]. Desalination, 2022, 540(115971): 1-9. [50] Rezaei M, Warsinger D M, Lienhard V J H, et al. Wetting prevention in membrane distillation through superhydrophobicity and recharging an air layer on the membrane surface[J]. J Memb Sci, 2017, 530: 42–52. [51] Zhou W, Chen Y, He X, et al. Mechanistic insights to the reversibility of membrane wetting in membrane distillation[J]. J Memb Sci, 2023, 685(121958): 1-9. [52] Charfi A, Kim S, Yoon Y, et al. Optimal cleaning strategy to alleviate fouling in membrane distillation process to treat anaerobic digestate[J]. Chemosphere, 2021, 279: 130524. [53] Zhang W, Yu S, Zhao H, et al. Vacuum membrane distillation for seawater concentrate treatment coupled with microbubble aeration cleaning to alleviate membrane fouling[J]. Sep Purif Technol, 2022, 290: 1-13. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号