表面接枝法荷正电复合纳滤膜制备及其镁锂分离性能 |
作者:张桢琳,王露,程亮,杨虎,汤永健,许振良 |
单位: 化学工程联合国家重点实验室,华东理工大学 化学工程研究所,膜科学与工程研发中心,上海200237 |
关键词: 表面接枝;纳滤膜;氧化石墨烯;镁锂分离 |
DOI号: |
分类号: TQ028 |
出版年,卷(期):页码: 2024,44(2):1-7 |
摘要: |
以哌嗪(PIP)与均苯三甲酰氯(TMC)界面聚合制备PA 纳滤膜作为底膜,利用聚乙烯亚胺(PEI)与氧化石墨烯(GO)混合溶液对其表面接枝,并制备PEI-GOS纳滤膜。通过扫描电镜(SEM)、Zeta点位和接触角等仪器对其微观形貌、表面电荷和水接触角等进行表征,在溶液总质量浓度1 000 mg/L (锂镁质量浓度比为50)的条件下,考察了纳滤膜的锂镁分离性能,结果表明,PEI-GOS纳滤膜具有致密平滑的聚酰胺层,膜表面荷正电,纯水通量可达50.1 L·m-2·h-1·MPa-1,对Mg2+具有良好的截留性能。PEI-GOS纳滤膜镁锂分离因子可达38.1,具备良好的镁锂分离性能。 |
PA nanofiltration membranes were prepared by interfacial polymerization of piperazine(PIP) and trimesoyl chloride(TMC) as the base membrane, and PEI-GOS nanofiltration membranes were prepared by surface grafting using a mixture of polyethyleneimine (PEI) and graphene oxide (GO).The results showed that the PEI-GOS nanofiltration membrane has a dense and smooth polyamide layer with a large positive charge on the membrane surface, and the pure water flux can reach 50.1 L·m-2·h-1·MPa-1 with excellent retention performance of Mg2+. The Mg-lithium separation factor of PEI-GOS nanofiltration membrane can reach 38.1, which has excellent Mg-Li separation performance. |
基金项目: |
国家自然科学基金(22078092, 22278132,21978082) |
作者简介: |
张桢琳(1998-),男,四川成都市人,硕士生,研究方向为膜制备与应用 |
参考文献: |
[1]乜贞, 伍倩, 丁涛,等. 中国盐湖卤水提锂产业化技术研究进展[J]. 无机盐工业,2022,54(10):1-12. [2]张秀峰, 谭秀民, 张利珍. 纳滤膜分离技术应用于盐湖卤水提锂的研究进展[J]. 无机盐工业,2017,49(1):1-5. [3]Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356: 226-254. [4]Bowen W R, Mukhtar H. Characterisation and prediction of separation performance of nanofiltration membranes[J]. Journal of membrane science, 1996, 112(2): 263-274. [5]Xu P, Wang W, Qian X, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio[J]. Desalination, 2019, 449: 57-68. [6]Demeneix B, Behr J P. Polyethylenimine (PEI)[J]. Advances in genetics, 2005, 53: 215-230.Gao W. The chemistry of graphene oxide[J]. Graphene oxide: reduction recipes, spectroscopy, and applications, 2015: 61-95. [7]Seabra A B, Paula A J, de Lima R, et al. Nanotoxicity of graphene and graphene oxide[J]. Chemical research in toxicology, 2014, 27(2): 159-168. [8]温书, 张文娟, 杜海洋,等. 氧化石墨烯在纳滤膜改性中的应用[J]. 膜科学与技术,2022,42(2):190-198. [9]Feng Y, Peng H, Zhao Q. Fabrication of high performance Mg2+/Li+ nanofiltration membranes by surface grafting of quaternized bipyridine[J]. Separation and Purification Technology, 2022, 280: 119848. [10]Liang S, Zhu L, Wang S, et al. Fast Reduced Graphene-Based Membranes with High Desalination Performance[J]. Membranes, 2021, 11(11): 846. [11]Shao W, Liu C, Yu T, et al. Constructing positively charged thin-film nanocomposite nanofiltration membranes with enhanced performance[J]. Polymers, 2020, 12(11): 2526. [12]Yang M, Zhao C, Zhang S, et al. Preparation of graphene oxide modified poly (m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property[J]. Applied Surface Science, 2017, 394: 149-159. [13]Wu H, Zhao H, Lin Y, et al. Positively-charged PEI/TMC nanofiltration membrane prepared by adding a diamino-silane coupling agent for Li+/Mg2+ separation[J]. Journal of Membrane Science, 2023, 672: 121468. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号