金属-有机骨架离子凝胶膜的制备及其在C3H6/C3H8分离中的应用
作者:高云硕, 孙玉绣,刘丽娟, 耿晨旭, 张政清, 乔志华
单位: 1天津工业大学 省部共建分离膜与膜过程国家重点实验室,化学工程与技术学院,天津 300387; 2 PPG涂料(天津)有限公司,天津 300457
关键词: 金属-有机骨架;混合基质膜;离子凝胶;高掺杂量;C3H6/C3H8分离
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2024,44(2):19-28

摘要:
 通过调节反应时间合成出3种不同颗粒大小金属-有机骨架(ZIF-8),并将其与离子液体1-丙基-3-甲基咪唑双三氟甲磺酰亚胺盐(PmimTf2N)和聚醚共聚酰胺(Pebax 1657)混合制得ZIF-8/IL/Pebax离子凝胶膜用于对丙烯/丙烷混气体系的分离。通过ZIF-8颗粒与离子液体在Pebax膜中的协同作用,实现了金属有机骨架(MOF)填料在聚合物基质中高达70 %的质量掺杂量, C3H6/C3H8体系的气体分离性能也得到明显提升。研究表明,ZIF-8/IL/Pebax离子凝胶膜相比于Pebax纯膜,C3H6渗透通量提高了385 %,达到了227.1 Barrer;同时,C3H6/C3H8的选择性也从3.04提高到了25.11。此外,在不同温度和压力条件下(10 oC ~ 40 oC, 0.15 MPa ~ 0.3 MPa),ZIF-8/IL/Pebax离子凝胶膜均表现出优异的气体分离性能,并表现出了良好的应用前景。
 Three MOF metal organic frameworks (ZIF-8) with different particle sizes were synthesized by adjusting the reaction time in methanol solution at room temperature. ZIF-8/IL/Pebax ionic gel membranes were prepared by mixing MOFs with ionic liquid 1-propyl-3-methylimidazolium ditrifluoromethyl sulfonate imide salt (Pmim-Tf2N) and polyether copolyamide (Pebax 1657) for the separation of propylene/propane mixed gas system. Through the synergistic effect of ZIF-8 particles and Ionic liquid in Pebax membrane, high doping of metal-organic framework(MOF) fillers in polymer matrix (up to 70 %) was achieved, and the gas separation performance of C3H6/C3H8 system was significantly improved. The results show that the C3H6 permeability of the resulting ZIF-8/IL/Pebax ion gel membrane is increased by 385 % compared with the Pebax pure membrane, reaching 227.1 Barrer at 70 % doping mass fraction. Meanwhile, the selectivity of C3H6/C3H8 was also increased from 3.04 to 25.11. In addition, ZIF-8/IL/Pebax ionic gel membranes exhibit excellent gas separation performance at different temperatures and pressures (10 oC - 40oC, 0.15 MPa - 0.3MPa). This study has important practical potential in the field of C3H6/C3H8 separation and has shown good application prospects.

基金项目:
国家自然科学基金项目(22108202).

作者简介:
高云硕(1997-),男,黑龙江省肇源县人,硕士研究生,主要研究方向为MOF基气体分离膜应用,Email:1014180096@qq.com

参考文献:
 [1] Eldridge R B. Olefin/paraffin separation technology: A review[J]. Ind Eng Chem Res, 1993, 32(10):2208-221.
[2] Sadrameli S M. Thermal/catalytic cracking of hydrocarbons for the production of olefins: a state-of-the-art review: Thermal cracking review[J]. Fuel, 2015, 140:102-115.
[3] Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532: 435-437.
[4] Wang Y X, Peh B S, Zhao D. Alternatives to cryogenic distillation: Advanced porous materials in adsorptive light olefin/paraffin separations[J]. Small, 2019, 15: 52-58.
[5] Yang L F, Qian S H, Wang X B, et al. Energy-efficient separation alternatives: Metal-organic frameworks and membranes for hydrocarbon separation[J]. Chem Soc Rev, 2020, 49: 5359-5406.
[6] Hou J J, Liu P C, Yu L, et al. Olefin/paraffin separation through membranes: From mechanisms to critical materials[J]. J Mater Chem A, 2019, 7: 23489-23511.
[7] Dechnik J, Gascon J, Doonan C J, et al. Mixed-matrix membranes[J]. Angew Chem Int Ed, 2017, 56:9292.
[8] Hendon H C, Rieth A J, Korzyński M D, et al. Grand challenges and future opportunities for metal-organic frameworks[J]. ACS Cent Sci, 2017, 3: 554-563.
[9] Pimentel B R, Parulkar A, Zhou E, et al. Zeolitic imidazolate frameworks: next-generation materials for energy-efficient gas separations[J]. ChemSusChem, 2014, 7: 3202-3240.
[10] Bhatt P M, Guillerm V, Datta S J, et al. Topology meets reticular chemistry for chemical separations: MOFs as a case study[J]. Chem, 2020, 6: 1613-1633.
[11] Park K S, Ni Z, Côté A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. PANS. 2006, 103(27): 10186-10191.
[12] Li K H, Olson D H, Seidel J, et al. Zeolitic imidazolate frameworks for kinetic separation of propane and propene[J]. J Am Chem Soc, 2009, 131: 10368-13069. 
[13] Casado-Coterillo C, Zornoza B, Coronas J, et al. Synthesis and characterisation of MOF/ionic liquid/chitosan mixed matrix membranes for CO2/N2 separation[J]. RSC Adv, 2015, 5: 102350-102361.
[14] Yamato D, Maki T, Watanabe S, et al. Synthesis and adsorption properties of ZIF-8 nanoparticles using a micromixer[J]. Chem Eng J, 2013, 227: 145-150. 
[15] Tsai C W, Langner H J. The effect of synthesis temperature on the particle size of nano-ZIF-8[J]. Microporous Mesoporous Mater, 2016, 221: 8-13. 
[16] Song Q, Nataraj S K, Roussenova M V, et al. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation[J]. Energy Environ Sci, 2012, 5: 8359-8369.
[17] Zhang C, Zhang K, Xu L, et al. Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations[J]. AIChE J, 2014, 60: 2625-2635.
[18] An H, Cho K Y, Back S, et al. The significance of the interfacial interaction in mixed matrix membranes for enhanced propylene/propane separation performance and plasticization resistance[J]. Sep PurifTechnol, 2021, 261: 118-279.
[19] Zhang R, Ji S, Wang N, et al. Coordination-driven in?situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes[J]. Angew Chem Int Ed, 2014, 53: 9775-9779.
[20] Askari M, Chung T S. Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes[J]. J Membr Sci, 2013, 444:173-183.
[21] Zhang C, Dai Y, Johnson J R, et al. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations[J]. J Membr Sci, 2012, 389: 34-42.
[22] Liu Y S, Kita H, Tanaka K, et al. Mechanochemically synthesized ZIF-8 nanoparticles blended into 6FDA-TrMPD membranes for C3H6/C3H8 separation[J]. Appl Polym Sci,2021, 138: 50251-50261.
[23] Amedi H R, Aghajani M. Aminosilane-functionalized ZIF-8/Pebax mixed matrix membrane for gas separation application[J]. Microporous Mesoporous Mater, 2017, 247: 124-135.
[24] Yu J, Wang C, Xiang L, et al. Enhanced C3H6/C3H8 separation performance in poly(vinyl acetate) membrane blended with ZIF-8 nanocrystals[J]. Chem Eng Sci, 2018, 179: 1-12.
[25] Chi W S, Kim S J, Lee S J, et al. Enhanced performance of mixed-matrix membranes through a graft copolymer-directed interface and interaction tuning approach[J]. ChemSusChem, 2015, 8: 650-658.
[26] Kunjattu S H, Ashok V, Bhaskar A, et al. ZIF-8@DBzPBI-BuI composite membranes for olefin/paraffin separation[J]. J Membr Sci, 2018, 549: 38-45.
[27] Yang F, Mu H, Wang C Q, et al. Morphological map of ZIF-8 crystals with five distinctive shapes: Feature of filler in mixed matrix membranes on C3H6/C3H8 separation[J]. Chem Mater, 2018, 30: 3467-3473.
[28] KINIK F P, ALTINTAS C, BALCI V, et al. [BMIM][PF6] Incorporation doubles CO2 selectivity of ZIF-8: Elucidation of interactions and their consequences on performance[J]. ACS Appl Mater Interfaces, 2016, 8(45): 30992-31005.
[29] Hudiono Y C, Carlisle T K, LaFrate A L, et al. Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation[J]. J. Membr Sci, 2011, 370: 141-148.
[30] Mohshim D F, Mukhtar H, Man Z, et al. The effect of incorporating ionic liquid into polyethersulfone-SAPO-34 based mixed matrix membrane on CO2 gas separation performance[J]. Sep Purif Technol, 2014, 135: 252-258.
[31] Ban Y J, Li Z G, Li Y S, et al. Confinement of ionic liquids in nanocages: Tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture[J]. Angew Chem Int Ed, 2015, 54:15483-15487. 
[32] 冯孝权, 赵倩倩, 张亚涛. 基于ZIF-8固定载体复合膜的制备及CO2分离性能研究[J]. 膜科学与技术,2021, 41(4): 35-48. 
[33] 莫凯, 问菲, 金花, 等. ZIF-8膜分离丙烯/丙烷的研究进展[J]. 膜科学与技术, 2020, 40(2): 136-145. 
[34] 赵新, 乔志华, 孙玉绣, 等. 机械化学法合成多配体MOF填料用于高效CO2分离[J]. 膜科学与技术, 2016, 68(11), 87-94.   
[35] 郭翔宇, 阳庆元. 含开放金属位点MIL-101(Cr)掺杂的混合基质膜制备及其CO2分离性能[J]. 化工学报, 2017, 68(11):4323-4332.
[36] Guo X Y, Huang H L, Ban Y, et al. Mixed matrix membranes incorporated with amine-functionalized titanium-based metal-organic framework for CO2/CH4 separation[J]. J. Membr Sci, 2015, 478: 130-139.
[37] Jomekian A, Behbahani R M, Mohammadi T, et al. Utilization of Pebax 1657 as structure directing agent in fabrication of ultra-porous ZIF-8[J]. J Solid State Chem, 2016, 236: 212-216.
[38] Sun Y X, Zhang Z Q, Tian L, et al. Confined ionic liquid-built gas transfer pathways for efficient propylene/propane separation[J]. ACS Appl Mater Interfaces, 2021, 13: 49050-49057.
[39] Burns R L, Koros W J. Defining the challenges for C3H6/C3H8 separation using polymeric membranes[J]. J Membr Sci, 2003, 211: 299-309.
[40] Murali R S, Rani K Y, Sankarshana T, et al. Separation of binary mixtures of propylene and propane by facilitated transport through silver incorporated poly(ether-block-amide) membranes[J]. Oil Gas Sci Technol, 2015, 70: 381-390. 
[41] Lin R J, Ge L, Diao H, et al. Propylene/propane selective mixed matrix membranes with grape-branched MOFs/CNTs filler[J]. J Mater Chem A, 2016, 4: 6084-6090.
[42] Oh J W, Cho K Y, Kan M Y, et al. High-flux mixed matrix membranes containing bimetallic zeolitic imidazole framework-8 for C3H6/C3H8 separation[J]. J Membr Sci, 2020, 596:117735.
[43] Kwon O, Kim M, Choi E, et al. High-aspect ratio zeolitic imidazolate framework (ZIF) nanoplates for hydrocarbon separation membranes[J]. Sci Adv, 2022, 8: 6841.
[44] Liu Y, Chen Z, Liu G, et al. Conformation-controlled molecular sieving effects for membrane-based propylene/propane separation[J]. Adv Mater, 2019, 31: 1807513.
[45] Ma X, Swaidan J, Wang Y, et al. Highly compatible hydroxyl-functionalized microporous polyimide-ZIF-8 mixed matrix membranes for energy efficient propylene/propane separation[J]. ACS Appl Nano Mater, 2018, 1:3541-3547.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号