共沉积-交联法制备PDA/PEI-PVDF中空纤维复合超滤膜 |
作者:冯子腾,王 彤,林亚凯,汪 林,余立新,王晓琳 |
单位: 1清华大学化学工程系 膜材料与工程北京市重点实验室, 北京 100084; 2镇江清研膜业科技有限公司,江苏 镇江 212141 |
关键词: 复合超滤膜;多巴胺;聚乙烯亚胺;共沉积;亲水性 |
DOI号: |
分类号: TQ 028.8 |
出版年,卷(期):页码: 2024,44(2):45-54 |
摘要: |
聚偏氟乙烯(PVDF)膜以其出色的化学稳定性、优异的耐高温性能和机械强度在许多领域得到广泛应用,而对膜孔径和亲水性的精确控制是优化膜分离效率、稳定性和持久性的关键。本文采用多巴胺(DA)与聚乙烯亚胺(PEI)共沉积并通过戊二醛实现交联的方法,将PVDF中空纤维膜的孔径从(119.0±3.55) nm减小到(16.2±0.36 )nm,接触角由107.7°下降至61.4°,同时实现了膜孔径和亲水性调控,制备出高性能PDA/PEI-PVDF中空纤维亲水超滤膜。本研究为超/微滤膜的性能调控提供了新思路。 |
Polyvinylidene fluoride (PVDF) membranes are extensively employed across various fields owing to their remarkable chemical stability, elevated temperature resistance, and robust mechanical strength. The precise modulation of membrane pore dimensions and hydrophilicity plays a pivotal role in optimizing membrane separation efficiency, stability, and longevity. In this study, we proposed a co-deposition method of dopamine (DA) and polyethyleneimine (PEI) with cross-linking through glutaraldehyde to regulate the pore size and hydrophilicity of PVDF hollow fiber membranes. Reduction of the pore diameter from (119.0 ± 3.55) nm to (16.2 ± 0.36) nm and contact angle from 107.7° to 61.4° was achieved, simultaneously achieving membrane pore size and hydrophilicity regulation, leading to the preparation of a high-performance PDA/PEI-PVDF hollow fiber hydrophilic ultrafiltration membrane. The resulting membrane exhibited a rejection rate of more than 95% for 20 nm silica nanoparticles. The findings of this study provide a novel approach for tuning the performance of ultrafiltration/microfiltration membranes. |
基金项目: |
国家自然科学基金面上项目(22378225);国家重点研发计划项目(2022YFC2105103);清华大学春风基金项目(2021Z99CFY024) |
作者简介: |
冯子腾(2001-),男,安徽阜阳人,硕士研究生,主要从事微孔膜表面改性研究,E-mail:fengzt22@mails.tsinghua.edu.cn |
参考文献: |
[1] 杨静,徐志康.聚合物分离膜的表界面工程[J].膜科学与技术,2018,38(1):1-8. [2] 李世燕. 除病毒过滤可优化点探讨 [J]. 流程工业, 2020, (10): 57-59. [3] 张仁伟,刘四华,汤超,等.PVDF超疏水微孔膜调控研究[J].膜科学与技术,2020,40(3):7-13+21. [4] Gin D L, Noble R D. Designing the next generation of chemical separation membranes [J]. Science, 2011, 332(6030): 674-676. [5] Wu Q, Chen Q. Application of membrane separation technology in water treatment process [J]. IOP Conference Series: Earth and Environmental Science, 2020, 508(1): 012048. [6] Favre E. Membrane separation processes and post-combustion carbon capture: State of the art and prospects [J/OL] 2022, 12(9):10.3390/membranes12090884 [7] Atkinson S. Energy-saving ultrafiltration membrane removes viruses [J]. Membrane Technology, 2021, 2021(10): 7. [8] 康为清, 时历杰, 赵有璟, 等. 水处理中膜分离技术的应用 [J]. 无机盐工业, 2014, 46(5): 6-9. [9] Langlet J, Ogorzaly L, Schrotter J C, et al. Efficiency of MS2 phage and Qβ phage removal by membrane filtration in water treatment: Applicability of real-time RT-PCR method [J]. J Membr Sci, 2009, 326(1): 111-116. [10] Bolton G, Cabatingan M, Rubino M, et al. Normal-flow virus filtration: detection and assessment of the endpoint in bioprocessing [J]. Biotechnology and Applied Biochemistry, 2005, 42(2): 133-142. [11] Tang Y , Lin Y , Ma W ,et al. A review on microporous polyvinylidene fluoride membranes fabricated via thermally induced phase separation for MF/UF application[J]. J Membr Sci, 2021, 639:119759. [12] Jung J T , Kim J F , Wang H H ,et al. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS)[J]. J Membr Sci, 2016, 514:250-263. [13] Oh S J , Kim N , Lee Y T .Preparation and characterization of PVDF/TiO2 organic–inorganic composite membranes for fouling resistance improvement[J]. J Membr Sci, 2009, 345(1-2):13-20. [14] Wang P , Tan K L , Kang E T ,et al. Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane[J]. J Membr Sci, 2002, 195(1):103-114. [15] Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings [J]. Science, 2007, 318(5849): 426-430. [16] Liu F, Liu X, Chen F, et al. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications [J]. Progress in Polymer Science, 2021, 123: 101472. [17] Lv Y, Yang H C, Liang H Q, et al. Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking[J]. J Membr Sci, 2015, 476:50-58. [18] Yang H C, Liao K J, Huang H, et al. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-i |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号