碳基溴离子选择渗透膜的构筑及其对溴的分离
作者:王 洁,张 良,罗善霞,杜 晓,郝晓刚
单位: 1. 太原理工大学 化学工程与技术学院,太原 030024;2. 河北省区域地质调查院,廊坊 065000;3. 中国地质地调查局廊坊自然资源综合调查中心,廊坊 065000
关键词: 溴离子;电控离子选择渗透;分离回收;碳纳米管;碳基膜
DOI号:
分类号: TQ028
出版年,卷(期):页码: 2024,44(2):64-71

摘要:
 以碳纳米管(CNTs)作为电子传递载体、溴氧铋(BiOBr)作为溴离子(Br-)传输通道、季铵化壳聚糖(QCS)作为成膜剂,通过真空抽滤法制备了碳基溴离子选择渗透膜(CNTs/QCS/BiOBr),并将其应用于电控离子选择渗透膜分离(ESIP)系统中分离回收Br-,探讨了ESIP体系中的操作参数对Br-渗透通量的影响,研究了CNTs/QCS/BiOBr膜在ESIP系统中的稳定性及其对Br-的选择性分离效果。结果表明,当ESIP系统的槽电压和脉冲电压分别为3.5 V和0/-2.5 V时,CNTs/QCS/BiOBr膜对Br-的渗透通量达到了3.00 g/(m2·h)。此外,CNTs/QCS/BiOBr复合膜在ESIP系统中不仅具有循环稳定性,还能实现Br-的选择性分离。
  The carbon-based Br- permselective membrane (CNTs/QCS/BiOBr) was constructed by vacuum filtration using carbon nanotubes (CNTs) as the transfer carrier for electrons, bismuth oxybromide (BiOBr) as the transport channels for Br- and quaternized chitosan (QCS)as the membrane forming agent. Subsequently, the CNTs/QCS/BiOBr membrane was assembled in the electrochemically switched ion permselective (ESIP) system for the separation of Br- and the influence of different operating parameters on the separation effect of Br- was investigated. The stability of CNTs/QCS/BiOBr membrane in the ESIP system and their selective separation effect on Br- were researched. The results indicate that the flux of CNTs/QCS/BiOBr composite membrane for Br- reaches 3.00 g/(m2·h) when the cell and pulse voltages in the ESIP system are 3.5 V and 0/-2.5 V, respectively. In addition, the CNTs/QCS/BiOBr composite membrane possesses cycling stability and selectivity for Br-.

基金项目:
国家自然科学基金项目(U21A20303,22078217);河北省地质矿产勘查开发局科研项目(13000022P00329410110T)

作者简介:
王洁(1995-),女,山西忻州人,博士生,主要从事电控膜分离研究,E-mail:2041550894@qq.com

参考文献:
 [1] 管若伶, 王海增. 溴资源与主要化工品[J]. 无机盐工业, 2018, 50(4):6-10.
[2] 柴子华, 李明明. 我国溴工业生产技术现状与展望[J]. 盐科学与化工, 2018, 47(6):1-4.
[3] Dong H, Xiao K J, Xian Y P, et al. A novel approach for simultaneous analysis of perchlorate (ClO4-) and bromate (BrO3-) in fruits and vegetables using modified QuEChERS combined with ultrahigh performance liquid chromatography-tandem mass spectrometry[J]. Food Chem, 2019, 270:196-203.
[4] 冯国卿, 张璐颖, 王诗涵, 等. NiCoP/炭电催化膜的制备及性能研究[J]. 膜科学与技术, 2021, 41(3):16-23.
[5] Du X, Hao X G, Wang Z D, et al. Electroactive ion exchange materials: current status in synthesis, applications and future prospects[J]. J Mater Chem A, 2016, 4:6236-6258.
[6] 郝晓刚. 电控离子交换膜技术:从电控离子交换到电控离子选择渗透膜[C]// 第五届全国膜分离技术在冶金工业中应用研讨会. 中国膜工业协会, 2016.
[7] 武晓岗, 王洁, 张良, 等. 碳纳米管基电子-离子双传递功能复合膜的构筑及电驱动离子分离性能[J]. 太原理工大学学报, 2023, 54(1):17-23.
[8] Gao F F, Du X, Hao X G, et al. Electrical double layer ion transport with cell voltage-pulse potential coupling circuit for separating dilute lead ions from wastewater[J]. J Membr Sci, 2017, 535:20-27.
[9] Gao F F, Du X, Hao X G, et al. A potential-controlled ion pump based on a three-dimensional PPy@GO membrane for separating dilute lead ions from wastewater[J]. Electrochim Acta, 2017, 236:434-442.
[10] Myriam B, Maurizio P. Carbon nanotube membranes in water treatment applications[J]. Adv Mater Interfaces, 2021, 9:2101260.
[11] 章海, 徐莉莉, 穆荣, 等. 导电膜的分类、制备及应用[J]. 膜科学与技术, 2023, 43(2):164-172.
[12] Xiong X Y, Ding L Y, Wang Q Q, et al. Synthesis and photocatalytic activity of BiOBr nanosheets with tunable exposed (010) facets[J]. Appl Catal B, 2016, 188:283-291.
[13] Di J, Xia J X, Li H M, et al. Bismuth oxyhalide layered materials for energy and environmental applications[J]. Nano Energy, 2017, 41:172-192.
[14] Wang J, Zhang L, Hu Y S, et al. Intrinsic facet-dependent electrochemical activities of BiOBr nanosheets for Br- exchange in electrochemically switched ion exchange process[J]. Chem Eng J, 2023, 460:141798.
[15] Zeng X R, Wang L L, Wang J L, et al. Construction of ordered OH- migration channels in anion exchange membrane by synergizes of cationic metal-organic framework and quaternary ammonium groups[J]. Int J Energy Res, 2021, 45:10895-10911.
[16] Khan M A, Kumar M, Alothman Z A. Preparation and characterization of organic-inorganic hybrid anion-exchange membranes for electrodialysis[J]. J Ind Eng Chem, 2015, 21:723-730.
[17] Xie Y H, Li S Y, Liu G L, et al. Equilibrium, kinetic and thermodynamic studies on perchlorate adsorption by cross-linked quaternary chitosan[J]. Chem Eng J, 2012, 192:269-275.
[18] Wu D, Yue S T, Wang W, T. An, et al. Boron doped BiOBr nanosheets with enhanced photocatalytic inactivation of Escherichia coli[J]. Appl Catal B, 2016, 192:35-45.
[19] Fu T, Huang G F, Liu K, et al. Multifunctional magnetic bentonite induced hierarchical BiOBr coupling Bi nanoparticles and oxygen vacancies for enhanced photocatalytic performance[J]. Sep Purif Technol, 2023, 306:122555.
[20] Wang S, Wang Z, Xu J M, et al. Construction of N-spirocyclic cationic three-dimensional highly stable transport channels by electrospinning for anion exchange membrane fuel cells[J]. J Membr Sci, 2022, 660:120852.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号