基于不同厂家聚醚砜基膜的薄膜复合正渗透膜性能的比较
作者:许素博,赵 频,刘 浩,宋伟龙,王新华
单位: 1.江南大学 环境与土木工程学院,无锡 214122;2.江苏省生物质能与减碳技术工程实验室,无锡 214122;3.江苏省水处理技术与材料协同创新中心,苏州 215009
关键词: 薄膜复合膜;基底膜;界面聚合反应;沥干时间;正渗透
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2024,44(2):72-79

摘要:
 薄膜复合(TFC)膜由多孔基底层和通过界面聚合反应生成的聚酰胺层组成,在纳滤、反渗透和正渗透等领域已经得到了广泛的应用。近年来,基底膜对TFC膜性能的影响受到越来越多的关注。早期实验数据显示,即使在制备方法和基底膜名义孔径完全相同的条件下,由不同厂家生产的基膜所制备的TFC膜也存在显著差异。本文选择两家公司名义孔径均为0.22 μm的商品聚醚砜(PES)膜为基底,通过调节界面聚合过程水相的沥干时间,对比研究了2种基膜的不同性质及其对TFC膜性能的影响。结果表明,亲水性更强、膜孔位置分布更密集且均匀、孔径更均一的基膜具有更高的水通量和更低的反向盐质通量。此外,基于两种基膜的TFC正渗透膜的水通量均随沥干时间的拉长而呈现不断降低的趋势,而反向盐通量始终保持较低水平。综上,本研究可为未来TFC膜的规范化制备提供技术支持。
 Thin film composite (TFC) membranes, which consist of a porous substrate and a polyamide layer generated by interfacial polymerization (IP) reaction, have been widely used in the fields of nanofiltration, reverse osmosis and forward osmosis (FO). Recently, the influence of substrate properties on the performance of TFC membranes has received increasing attention. Our early study found that even under the conditions of identical preparation methods and nominal pore sizes of the substrate membranes, there were significant differences in the TFC membranes prepared from substrate membranes produced by different manufacturers. In this paper, commercial polyethersulfone (PES) membranes with nominal pore size of 0.22 μm from two companies were selected as the substrate, and the different properties of the two substrate membranes and their effects on the performance of TFC membranes were comparatively studied by adjusting the draining time of the aqueous phase in the IP process. The results showed that the substrate membrane with stronger hydrophilicity, denser and more uniform distribution of membrane pore locations, and more homogeneous pore size had higher water flux and lower reverse salt flux. In addition, the water flux of TFC FO membranes based on both substrate membranes showed a decreasing trend with the elongation of the draining time, while the reverse salt flux always remained low. In conclusion, this study provides a reference for the standardized preparation of TFC membranes in the future.

基金项目:
国家自然科学基金青年项目(52100089)

作者简介:
许素博(2000-),男,山东菏泽人,硕士生,主要从事膜法水处理技术研究,E-mail:xu17159877560@163.com

参考文献:
 [1] Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades [J]. Nature, 2008, 452: 301-310.
[2] Elimelech M, Philip W A. The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011, 333: 712–717. 
[3] Logan B E, Elimelech M. Membrane-based processes for sustainable power generation using water [J]. Nature, 2012, 7411: 313-319.
[4] Kamali M, Suhas D P, Costa M E, et al. Sustainability considerations in membrane-based technologies for industrial effluents treatment[J]. Chemical Engineering Journal, 2019, 368: 474-494.
[5] She Q, Wang R, Fane A G, et al. Membrane fouling in osmotically driven membrane processes: A review[J]. Journal of Membrane Science, 2016, 499: 201-233.
[6] Lutchmiah K, Verliefde A R D, Roest K, et al. Forward osmosis for application in wastewater treatment: A review[J]. Water Research, 2014, 58: 179-197.
[7] Yang Z, Zhou Z, Guo H, et al. Tannic acid/Fe3+ nanoscaffold for interfacial polymerization: toward enhanced nanofiltration performance[J]. Environmental Science & Technology, 2018, 52(16): 9341-9349.
[8] Peng L E, Yang Z, Long L, et al. A critical review on porous substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives[J]. Journal of Membrane Science, 2022, 641: 119871.
[9] Lalia B S, Kochkodan V, Hashaikeh R, et al. A review on membrane fabrication: Structure, properties and performance relationship[J]. Desalination, 2013, 326: 77-95.
[10] Zhao S, Liao Z, Fane A, et al. Engineering antifouling reverse osmosis membranes: A review[J]. Desalination, 2021, 499: 114857.
[11] Jimenez-Solomon M F, Gorgojo P, Munoz-Ibanez M, et al. Beneath the surface: Influence of supports on thin film composite membranes by interfacial polymerization for organic solvent nanofiltration[J]. Journal of Membrane Science, 2013, 448: 102-113.
[12] Peng L E, Yao Z, Yang Z, et al. Dissecting the role of substrate on the morphology and separation properties of thin film composite polyamide membranes: seeing is believing[J]. Environmental Science & Technology, 2020, 54(11): 6978-6986.
[13] Kim J P, Go C Y, Kang J, et al. Nanoporous multilayer graphene oxide membrane for forward osmosis metal ion recovery from spent Li-ion batteries[J]. Journal of Membrane Science, 2023, 676: 121590.
[14] Kang J, Choi Y, Kim J H, et al. Functionalized nanoporous graphene membrane with ultrafast and stable nanofiltration[J]. Journal of Membrane Science, 2021, 618: 118635.
[15] Kwon O, Kim M, Choi E, et al. High–aspect ratio zeolitic imidazolate framework (ZIF) nanoplates for hydrocarbon separation membranes[J]. Science Advances, 2022, 8(1): eabl6841.
[16] Qian Y, Li H, Lu J, et al. Inhibiting Polyamide Intrusion of Thin Film Composite Membranes: Strategies and Environmental Implications[J]. Environmental Science & Technology, 2023, 57: 10860-10869. 
[17] Long L, Peng L E, Zhou S, et al. NaHCO3 addition enhances water permeance and Ca/haloacetic acids selectivity of nanofiltration membranes for drinking water treatment[J]. Water Research, 2023, 242: 120255.
[18] Wu C, Long L, Yang Z, et al. Porous substrate affects fouling propensity of thin-film composite nanofiltration membranes[J]. Journal of Membrane Science Letters, 2022, 2(2): 100036.
[19] 徐梦思, 马广翔, 易夏文等. 内嵌碳纳米管层的导电正渗透膜制备及其缓解有机污染的研究[J]. 膜科学与技术, 2021, 41(03): 9-15+23. 
[20] Sun P F, Sarkar P, Yun E T, et al. Multi-layer structure toward simultaneous enhancement of forward osmosis membrane separation performance and anti-biofouling property[J]. Journal of Membrane Science, 2023, 683: 121804.
[21] Zhou Q, Zhao P, Xu R, et al. Porous graphene oxide surface-coated thin-film composite membrane for simultaneously increasing permeation performance and organic-fouling migration capacities[J]. Journal of Membrane Science, 2022, 661: 120942.
[22] Ren J, Chowdhury M R, Qi J, et al. Relating osmotic performance of thin film composite hollow fiber membranes to support layer surface pore size[J]. Journal of Membrane Science, 2017, 540: 344-353.
[23] A.K. Ghosh, E.M.V. Hoek, Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes. Journal of Membrane Science, 2009, 336: 140–148.
[24] Vatanpour V, Paziresh S, Mehrabani S A N, et al. TiO2/CDs modified thin-film nanocomposite polyamide membrane for simultaneous enhancement of antifouling and chlorine-resistance performance[J]. Desalination, 2022, 525: 115506.
[25] 宋玉军, 程淑英, 刘福安等. 制备NF-TFC膜的界面聚合反应研究[J]. 水处理技术, 2000(04): 203-206.
[26] Shao S, Zeng F, Long L, et al. Nanofiltration membranes with crumpled polyamide films: a critical review on mechanisms, performances, and environmental applications[J]. Environmental Science & Technology, 2022, 56(18): 12811-12827.
[27] Lutchmiah K, Verliefde A R D, Roest K, et al. Forward osmosis for application in wastewater treatment: A review[J]. Water Research, 2014, 58: 179-197.
[28] 刘晓辉, 杨璇, 闫弘津. 海藻酸钠/聚丙烯腈超滤膜的制备及性能[J]. 天津工业大学学报, 2023, 42(02): 22-27+33.
[29] Xu W, Ge Q. Novel functionalized forward osmosis (FO) membranes for FO desalination: Improved process performance and fouling resistance[J]. Journal of Membrane Science, 2018, 555: 507-516.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号