CTA中空纤维亲和色谱的制备及其吸附性能 |
作者:李淑琴,武皎洁,周君婕,魏永明,许振良,杨 虎 |
单位: 化学工程联合国家重点实验室,华东理工大学,功能膜科学与工程研究中心,上海200237 |
关键词: 表面改性;CTA中空纤维亲和色谱;静态吸附;动态吸附 |
DOI号: |
分类号: TQ028.3 |
出版年,卷(期):页码: 2024,44(2):97-106 |
摘要: |
为探究三醋酸纤维素(CTA)中空纤维亲和色谱的吸附性能,以CTA中空纤维膜为基膜,通过水解、1, 4-丁二醇二缩水甘油醚(EGDE)交联活化、接枝1, 6-己二胺(HMDA)作为间隔臂对膜表面进行改性,然后以亚氨基二乙酸(IDA)为配基,螯合Cu2+制备了改性CTA中空纤维亲和色谱. 对于γ-球蛋白的静态吸附研究表明:当吸附液γ-球蛋白质量浓度为1 mg/mL、离子浓度为0.2 mol/L和pH=8时,有最大静态吸附容量2.4 mg/cm3. 且其吸附过程符合Langmuir等温吸附模型. 对于γ-球蛋白的动态吸附研究表明:在实验研究的范围内,不同流速下的穿透曲线都呈现出类似“S”型,流速并不影响CTA中空纤维亲和色谱上γ-球蛋白的结合能力;γ-球蛋白的动态吸附容量随其初始浓度的增加而增加. |
In order to explore the adsorption properties of cellulose triacetate (CTA) hollow fiber affinity chromatography, the CTA hollow fiber membrane was used as the basal membrane, The surface of the membrane was modified by hydrolysis, crosslinking activation of 1,4-butanediol diglycidyl ether (EGDE), grafting 1,6-hexanediamine (HMDA) as the spacer arm, and then the modified CTA hollow fiber affinity chromatography was prepared by chelating Cu2+ with iminodiacetic acid (IDA) as ligand. In the static adsorption study of γ-globulin: when the concentration of γ-globulin adsorption solution is 1 mg/mL, ion concentration is 0.2mol/L and pH=8, the maximum static adsorption capacity is 2.4mg/cm3. The adsorption process accords with Langmuir isothermal adsorption model. For the study of dynamic adsorption of γ-globulins: within the scope of experimental studies, the penetration curves at different flow rates were similar to "S" shape, and the flow rate did not affect the binding ability of γ-globulin on CTA hollow fiber affinity chromatography; The dynamic adsorption capacity of γ-globulin increased with the increase of initial concentration. |
基金项目: |
国家自然科学基金项目(21978082,22278132,22078092). |
作者简介: |
李淑琴(1997-),女,湖北仙桃市人,硕士生,研究方向为分离膜的制备及应用研究,E-mail: lsq13677292559@163.com |
参考文献: |
[1] Porath J, Carlsson J, Olssom I, et al. Metal chelate affinity chromatography, a new approach to protein fractionation[J]. Nature, 1975, 258(5536): 598–599. [2] Moore C P, Pieterson K, Desousa J M, et al. Characterization and utility of immobilized metal affinity-functionalized cellulose membranes for point-of-care malaria diagnostics[J]. J Chromatogr B, 2021, 1186: 123023. [3] Chen J, Yu B, Cong H, et al. Recent development and application of membrane chromatography[J]. Anal Bioanal Chem, 2022, 415(1): 45-65. [4] Ribeiro M B, Vijayalakshmi M, Todorova B D, et al. Effect of IDA and TREN chelating agents and buffer systems on the purification of human IgG with immobilized nickel affinity membranes[J]. J Chromatogr B, 2008, 861(1): 64-73. [5] Cheung R C, Wong J H, Ng T B. Immobilized metal ion affinity chromatography: A review on its applications[J]. Appl Microbiol Biotechnol, 2012, 96(6): 1411-1420. [6] Block H, Maertens B, Spriestersbach A, et al. Immobilized-metal affinity chromatography (IMAC): A review[J]. Methods Enzymol, 2009, 463: 439-473. [7] Jain P , Vyas M K , Geiger J H , et al. Protein purification with polymeric affinity membranes containing functionalized poly(acid) brushes[J]. Biomacromolecules, 2010, 11(4):1019-1026. [8] Hong Y G, Zhen H S, Jun D W, et al. Influence of preparation conditions on properties of chemical modified nylon affinity membrane (used for γ-globulin adsorption)[J]. Chin J Chem, 2010, 18(4): 516-520. [9] Ozeki K, Nagashima I, Hirakuri K K, et al. Adsorptive properties of albumin, fibrinogen, and gamma-globulin on fluorinated diamond-like carbon films coated on PTFE[J]. J Mater Sci-Mater M, 2010, 21(5): 1641-1648. [10] Yavuz H, Bereli N, Yilmaz F, et al. Antibody purification from human plasma by metal-chelated affinity membranes[J]. Methods Biochem Anal, 2011, 123(6):3476-3484. [11] Asena Ozbek M, Cimen D, Bereli N, et al. Metal-chelated polyamide hollow fiber membranes for ovalbumin purification from egg white[J]. J Chromatogr B, 2022, 1203: 123293. [12] Lu P, Gao Y, Umar A, et al. Recent advances in cellulose-based forward osmosis membrane[J]. Sci Adv Mater, 2015, 7(10): 2182-2192. [13] Madadkap P, Ghosh R. High-resolution protein separation using a laterally-fed membrane chromatography device[J]. J of Membr Sci, 2016, 499: 126-133. [14] Boi C, Malavasi A, Carbonell R G, et al. A direct comparison between membrane adsorber and packed column chromatography performance[J]. J Chromatogr A, 2020, 1612: 460629. [15] Ghosh R. Ultrahigh-speed, ultrahigh-resolution preparative separation of protein biopharmaceuticals using membrane chromatography[J]. J Sep Sci, 2022, 45(12): 2024-2033. [16] Rathore A S, Muthukumar S. High-throughput process development: II. Membrane chromatography[J]. Methods Mol Biol, 2014, 1129: 39-44. [17] Orr V, Zhong L, Moo-young M, et al. Recent advances in bioprocessing application of membrane chromatography[J]. Biotechnol Adv, 2013, 31(4): 450-465. [18] Wang X, Xu J, Li L, et al. Thiourea grafted PVDF affinity membrane with narrow pore size distribution for Au (III) adsorption: Preparation, characterization, performance investigation and modeling[J]. Chem Eng J, 2017, 314: 700-713. [19] Wei Y M, Li Y, Yang C, et al. More effective membrane chromatography[J]. AIChE J, 2015, 61(11): 3871-3878. [20] Liu Y, Feng Z, Shao Z, et al. Chitosan-based membrane chromatography for protein adsorption and separation[J]. Mater Sci Eng C, 2012, 32(6): 1669-1673. [21] 魏永明,吴荣荣,许振良,等. 具有微米级内外径CTA中空纤维膜制备与表征[J]. 膜科学与技术,2018,38(5): 8-14. [22] 吴荣荣. CTA螯合Cu2+亲和膜色谱的制备与表征[D]. 华东理工大学, 2018. [23] Li Y, Sun Y. Poly(4-vinylpyridine): A polymeric ligand for mixed-mode protein chromatography[J]. J Chromatogr A, 2014, 1373: 97-105. [24] Kosior A , Antosova M, Faber R , et al. Single-component adsorption of proteins on a cellulose membrane with the phenyl ligand for hydrophobic interaction chromatography[J]. J Membr Sci, 2013, 442: 216-224. [25] Li X, Liu Y, Sun Y. Development of poly(methacrylate)-grafted Sepharose FF for cation-exchange chromatography of proteins[J]. J Chromatogr A, 2020, 1634: 461669. [26] Ge D T, Shi W, Ren L, et al. Variation analysis of affinity-membrane model based on Freundlich adsorption[J]. J Chromatogr A, 2006, 1114(1): 40-44. [27] Sun H, Zhang L, ChaiI H, et al. A study of human γ-globulin adsorption capacity of PVDF hollow fiber affinity membranes containing different amino acid ligands[J]. Sep Purif Technol, 2006, 48(3): 215-222. [28] Xiang T, Fu H, Yue W W, et al. Preparation and characterization of poly(acrylonitrile-co-maleic anhydride) copolymer modified polyethersulfone membranes[J]. Sep Sci Technol, 2013, 48(11): 1627-1635. [29] Kanavova N, Kosior A, Antosova M, et al. Application of a micromembrane chromatography module to the examination of protein adsorption equilibrium[J]. J Sep Sci, 2012, 35(22): 3177-3183. [30] 兰天. 醋酸纤维素基纳米纤维膜制备及其在蛋白质分离与纯化的应用[D]. 北京理工大学, 2016. [31] Hwang T S, Park J W. Preparation of modified hollow polypropylene membrane and their adsorption properties of γ-globulins[J]. Macromol Res, 2003, 11(5):347-351. [32] Yakup A M , Akn-Oktem G , Denizli A . Novel hydrophobic ligand-containing hydrogel membrane matrix: Preparation and application to gamma-globulins adsorption[J]. Colloid Surface B, 2001, 21(4): 273-283. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号