细菌纤维素/聚吡咯导电复合膜制备与探讨
作者:郭 琳,邓龙芝,余 杰,潘家乐,朱雄伟
单位: 武汉工程大学 环境生态与生物工程学院,武汉 430200
关键词: 细菌纤维素膜;聚吡咯;孔隙率;渗流理论
DOI号:
分类号: TQ3117
出版年,卷(期):页码: 2024,44(2):118-124

摘要:
 超级电容器是一种新型的储能装置,由载体、高分子导电材料、氧化剂等组成,细菌纤维素膜韧性好、孔隙率优良,现已作为一种载体材料。本研究选用葡糖醋杆菌在特定培养基培养生长形成细菌纤维素膜,提取加工后与聚吡咯(PPy)和氧化剂原位聚合,以 FeCl3作为氧化剂使不同浓度的吡咯聚合附着在其表面形成超级电容器,通过傅里叶红外光谱分析,再根据渗流理论探讨膜的电导率与孔隙率的变化规律,最后测出含电量的变化。研究结果表明:孔隙率与电导率并不成正比关系,孔隙率在25%~30%内,其电导率最大,0.01 mol/L浓度聚吡咯的孔隙率最大为60.05%,电导率却最小(1×10-6 S/m),0.06 mol/L浓度聚吡咯孔隙率为23.04%,却获得了最大的电导率(2.6×10-1 S/m)。
 
 Supercapacitor is a new type of energy storage device, consisting of carrier, polymer conductive material, oxidant, etc. In terms of carrier, bacterial cellulose film with good toughness and excellent porosity has been used as a substrate material. In this study, Bacillus glucoaceticus was selected to grow in specific medium to form bacterial cellulose material film, extracted and processed with polypyrrole (PPy) and oxidant in situ polymerization, FeCl3 was used as oxidant The membrane was then extracted and processed with polypyrrole (PPy) and oxidant in situ, and FeCl3 was used as the oxidant to polymerise and attach different concentrations of pyrrole to its surface to form a supercapacitor. The results show that the porosity and conductivity are not proportional to each other, with the maximum conductivity within 25%-30% porosity, the maximum porosity of 60.05% for 0.01 mol/L concentration polypyrrole but the minimum conductivity (1×10-6S/m), and the maximum conductivity obtained for 0.06 mol/L concentration polypyrrole with 23.04% porosity (2.6×10 -1S/m).

基金项目:

作者简介:
郭琳(1999-),女,山西长治人,硕士研究生,研究方向工业微生物, Email:1748466470@qq.com

参考文献:
 [1] Seid L,Lakhdari D,Berkani M, et al. High-efficiency electrochemical degradation of phenol in aqueous solutions using Ni-PPy and Cu-PPy composite materials[J].J Hazard Mater,2022,423:126986.
[2] Coste B,Xiao B,Santos JS, et al. Piezo proteins are pore-forming subunits of mechanically activated channels[J].Nature,2012,483(7388):176-181.
[3] Worthington S R H. Estimating effective porosity in bedrock aquifers[J].Ground Water,2022,60(2):169-179.
[4] 彭旭冬. 多孔复合材料导电性能理论建模与数值模拟[D] :郑州:郑州大学,2020.
[5] Kumar R, Raizada P, Ahamad T, et al. Polypyrrole-based nanomaterials: A novel strategy for reducing toxic chemicals and others related to environmental sustainability applications[J].Chemosphere,2022,303:134993.
[6] Tan L, Zhang W, Zhu X, et al. Porous fibrous bacterial cellulose/La(OH)(3) membrane for superior phosphate removal from water[J].Carbohydr Polym,2022,298:120135.
[7] 郑若时. 聚吡咯纳米球及聚吡咯复合导电聚合物的制备与性能研究[D] :北京:清华大学,2012.
[8] 焦海山,宋悦宁,黄健,等.改性壳聚糖基导电复合材料神经导管的体内降解及组织相容性观察[J].中国修复重建外科杂志,2021,35(6):769-775.
[9] Lee K S, Kim J Y, Park J, et al. Two-Dimensional Heterostructure of PPy/CNT-E. coli for High-Performance Supercapacitor Electrodes[J].Materials (Basel),2022,15(17).
[10] Prominski A, Shi J, Li P, et al. Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues[J].Nat Mater,2022,21(6):647-655.
[11] Mbarki M, Sharrock P, Fiallo M, et al. Hydroxyapatite bioceramic with large porosity[J].Mater Sci Eng C Mater Biol Appl,2017,76:985-990.
[12]萧欣彤.细菌纤维素/聚吡咯基导电材料的制备与性能研究[D].无锡 :江南大学,2021.
[13]Wang S S, Han Y H, Chen J L, et al. Insights into Bacterial Cellulose Biosynthesis from Different Carbon Sources and the Associated Biochemical Transformation Pathways in Komagataeibacter sp. W1 [J].Polymers. 2018,10(9):963.
[14]Segal L, Creely J J, Martin A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J].Textile Research Journal. 1959,29(10):786-794. 
[15] Werner A D, Jazayeri A, Ramirez-Lagunas M. Sediment mobilisation and release through groundwater discharge to the land surface: Review and theoretical development[J].Sci Total Environ,2020,714:136757.
[16] 汤廉.细菌纤维素/聚吡咯柔性导电复合膜材料的制备与表征[D].上海:东华大学,2013.
[17] Ateh D D, Navsaria H A, Vadgama P. Polypyrrole-based conducting polymers and interactions with biological tissues[J].J R Soc Interface,2006,3(11):741-752.
[18] Loh D M, Nava M, Nocera D G. Polypyrrole-Silicon nanowire arrays for controlled intracellular cargo delivery[J].Nano Lett,2022,22(1):366-371.
[19] 高君华,黄浩,曾冲,郑瑞伦.孔隙率对传感器多孔电极材料导电性能的影响[J].材料导报,2021,35(18):18018-18023.
[20] Rim H,Chen Y,Tokgo J, et al.Time-dependent effect of seepage force on initiation of hydraulic fracture around a vertical wellbore[J].Materials (Basel),2023,16(5).
[21] Tang N,Zhang S,Si Y, et al.An ultrathin bacterial cellulose membrane with a Voronoi-net structure for low pressure and high flux microfiltration[J].Nanoscale,2019,11(38):17851-17859.
[22] Gamal H,Elkatatny S,Alsaihati A, et al. Intelligent prediction for rock porosity while drilling complex lithology in real time[J].Comput Intell Neurosci,2021,2021:9960478.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号