具有“刚性-柔性”双重协同抗污染功效PVDF膜表面微结构的设计及抗污染性能 |
作者:武成远,崔振宇 |
单位: 天津工业大学材料科学与工程学院,天津300387 |
关键词: 中空纤维膜;膜污染;亲水改性;“刚性-柔性”双重协同抗污染 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2024,44(2):140-149 |
摘要: |
采用“表面沉积-接枝”的方法将苯乙烯-马来酸酐(SMA)、三聚氰胺(MEL)和葡萄糖(GLU)3种刚柔性不同的亲水链引入聚偏氟乙烯(PVDF)膜表面。研究了接枝链刚性和柔性对抗牛血清蛋白(BSA)污染的性能及其影响规律。结果表明,接枝链的刚性和柔性对BSA在膜表面的黏附和膜表面污染层微观结构的影响比膜表面亲水性和荷电性的影响更显著。刚性MEL阻碍BSA在膜表面的黏附和聚集,柔性GLU可在增强膜亲水性的同时与MEL协同增强对BSA的排斥,延缓其在膜表面的聚集,从而进一步阻碍BSA在膜表面的堆积,使不可逆阻力占比降低到仅为2.47%,“刚性-柔性”双重协同抗污染功效显著提高了膜的抗污染性能。 |
This work uses the "surface deposition-grafting" method to introduce three types of hydrophilic chains with different rigid-flexible properties, namely Styrene-Maleic Anhydride (SMA), melamine (MEL), and glucose (GLU), onto the surface of polyvinylidene fluoride (PVDF) membranes. The influence of the rigidity and flexibility of the grafted chains on the anti-bovine serum albumin (BSA) fouling performance was investigated. The results show that the effects of the rigidity and flexibility of the grafted chains on BSA adhesion to the membrane surface and the microstructure of the membrane surface fouling layer are more significant than the effects of the surface hydrophilicity and charge properties. Rigid MEL impedes the adhesion and aggregation of BSA on the membrane surface, while flexible GLU can synergistically enhance the rejection of BSA with MEL while enhancing the hydrophilicity of the membrane. This delays its aggregation on the membrane surface, further preventing the accumulation of BSA on the membrane surface, and reducing the proportion of irreversible fouling resistance to only 2.47%. The dual "rigid-flexible" synergistic anti-fouling effect significantly improves the anti-fouling performance of the membrane. |
基金项目: |
国家自然科学基金面上项目(22178267) |
作者简介: |
武成远(1997-),男,河北衡水人,硕士生,主要从事膜材料制备及应用研究,E-mail:wu1183508711@163.com |
参考文献: |
[1] MENG X R,ZHANG N,WANG X D,et al.Dye effluent treatment using PVDF UF membranes with different properties[J].Desalination and Water Treatment,2014,52(25-27):5068-5075. [2] ZANINI S,MÜLLER M,RICCARDI C,et al.Polyethylene glycol grafting on polypropylene membranes for anti-fouling properties[J].Plasma Chemistry and Plasma Processing,2007,27(4):446-457. [3] SAKATA S,INOUE Y,ISHIHARA K.Precise control of surface electrostatic forces on polymer brush layers with opposite charges for resistance to protein adsorption[J].Biomaterials,2016,105:102-108. [4] WEI Q Q,WU C Y,ZHANG J,et al.Fabrication of surface microstructure for the ultrafiltration membrane based on “active-passive” synergistic antifouling and its antifouling mechanism of protein[J].Reactive and Functional Polymers,2021,169:105068. [5] LU X M,PENG Y L,QIU H R,et al.Anti-fouling membranes by manipulating surface wettability and their anti-fouling mechanism[J].Desalination,2017,413:127-135. [6] WANKE D,DA SILVA A,COSTA C.Modification of PVDF hydrophobic microfiltration membrane with a layer of electrospun fibers of PVP-co-PMMA:Increased fouling resistance[J].Chemical Engineering Research and Design,2021,171:268-276. [7] DAI Z W,WAN L S,XU Z K.Surface glycosylation of polyacrylonitrile ultrafiltration membrane to improve its anti-fouling performance[J].J Membr Sci,2008,325(1):479-485. [8] AKBARI A,DERIKVANDI Z,MOJALLALI ROSTAMI S M.Influence of chitosan coating on the separation performance,morphology and anti-fouling properties of the polyamide nanofiltration membranes[J].Journal of Industrial and Engineering Chemistry,2015,28:268-276. [9] XIE Y,LI S S,JIANG X,et al.Zwitterionic glycosyl modified polyethersulfone membranes with enhanced anti-fouling property and blood compatibility[J].Journal of Colloid and Interface Science,2015,443:36-44. [10] ZHANG P F,XIANG S,WANG H,et al.Understanding the multiple functions of styrene-co-maleic anhydride in fabricating polyvinylidene fluoride hollow fiber membrane via coupled phase inversion process and its effect on surface infiltration behavior and membrane permeability[J].J Membr Sci,2019,590:117269. [11] BIAN L,WEI Q Q,LI J X,et al.Hollow fiber composite membranes engineered via the combination of “anionic crosslinking and in situ biomineralization” for dye removal[J].European Polymer Journal,2022,179:111587. [12] BIAN L,SHEN C,SONG C Y,et al.Compactness-tailored hollow fiber loose nanofiltration separation layers based on “chemical crosslinking and metal ion coordination” for selective dye separation[J].J Membr Sci,2021,620:118948. [13] LV Y,YANG H C,LIANG H Q,et al.Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking[J].J Membr Sci,2015,476:50-58. [14] CHEN L,LI Z,WU G S,et al.Ultra-strong polyethyleneimine-graphene oxide nanocomposite film via synergistic interactions and its use for humidity sensing[J].Composites Part A:Applied Science and Manufacturing,2018,115:341-347. [15] CHEN X,HE Y,FAN Y,et al.Nature-inspired polyphenol chemistry to fabricate halloysite nanotubes decorated PVDF membrane for the removal of wastewater[J].Sep Purif Technol,2019,212:326-336. [16] DING J C,WU H Q,WU P Y.Preparation of highly permeable loose nanofiltration membranes using sulfonated polyethylenimine for effective dye/salt fractionation[J].Chemical Engineering Journal,2020,396:125199. [17] ZHAO X T,ZHANG R N,LIU Y N,et al.Antifouling membrane surface construction:Chemistry plays a critical role[J].J Membr Sci,2018,551:145-171. [18] HEBBAR R S,ISLOOR A M,PRABHU B,et al.Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay[J].Scientific Reports,2018,8:4665. [19] KANAGARAJ P,NAGENDRAN A,RANA D,et al.Separation of macromolecular proteins and removal of humic acid by cellulose acetate modified UF membranes[J].International Journal of Biological Macromolecules,2016,89:81-88. [20] ZHAO Y J,ZHOU S Y,LI M S,et al.Humic acid removal and easy-cleanability using temperature-responsive ZrO2 tubular membranes grafted with poly(N-isopropylacrylamide) brush chains[J].Water Research,2013,47(7):2375-2386. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号