冷冻辅助-界面反应法制备ZIF-8衍生物纳滤膜及其药物脱盐性能研究
作者:王程程,孙 皓,王乃鑫,纪树兰,安全福
单位: 北京工业大学 环境与生命学部,北京 100124
关键词: 冷冻辅助;原位生长;纳滤膜;ZIF-8;药物脱盐
出版年,卷(期):页码: 2024,44(3):1-9

摘要:
纳滤膜分离技术在药物脱盐领域具有较大应用潜力,而开发高性能的纳滤膜材料仍具有较大挑战。本研究采用冷冻辅助-界面反应法在氧化铝多孔支撑体内部原位生长了ZIF-8分离层,然后通过硫化处理形成ZIF-8衍生物(ZnS),提高了纳滤膜的渗透性和稳定性。通过SEM、EDS、XRD以及FT-IR等手段对ZIF-8及其衍生物复合膜的结构和化学性质进行了表征。将ZIF-8及其衍生物复合膜用于药物脱盐,考察了前驱体摩尔比、浓度以及反应温度对纳滤性能的影响。在最优条件下,ZnS纳滤膜对四环素的截留率为99.1%,对NaCl截留率小于10%,通量为335.6 LMH/MPa,表现出良好的抗生素脱盐性能和稳定性。
 
  The nanofiltration membrane separation technology has great potential for application in the field of pharmaceutical desalination. The development of new membrane materials with high performance has a great challenge. In this study, a ZIF-8 separation layer was prepared on alumina substrate using a freezing assisted-interface reaction method. Subsequently, the ZIF-8 derivatives (ZnS) were formed through sulfurization treatment to improve the permeability and stability of the nanofiltration membrane. The structure and morphology of ZIF-8 and its derivative composite membranes were characterized by SEM, EDS, XRD, FT-IR, and AFM. The obtained ZIF-8 and its derivative composite membranes were used for pharmaceutical desalination. The effects of precursor molar ratio, concentration, and reaction temperature on nanofiltration performance were investigated. With the optimal conditions, the ZnS nanofiltration membrane exhibited a rejection rate of 99.1% for tetracycline, less than 10% for NaCl, and a flux of 335.6 LMH/MPa, demonstrating good pharmaceutical desalination performance and stability.
王程程(1998-),女,山东泰安人,硕士研究生,主要从事金属有机框架纳滤膜的研究

参考文献:
[1] 吴麟华. 分离膜中的新成员——纳滤膜及其在制药工业中的应用[J]. 膜科学与技术, 1997, 17(5): 11-15. 
[2] 张 川,褚良银. 膜分离技术在抗生素提取中的应用[J]. 过滤与分离, 2014, 24(3): 20-24.
[3] Y. Sun, J. Zhong, Z. Lin, et al. Rigid twisted structured PA membranes for organic solvent nanofiltration via co-solvent assisted interfacial polymerization [J]. J Membr Sci, 2023, 666: 121179-121187.
[4] X. Zhang, Y. Dong, Q. Wang, et al. Structures and performance of alcohol activated thin film composite polyamide (TFC-PA) nanofiltration (NF) membranes prepared with and without Co(II) modulation [J]. Desalination, 2023, 548: 116242.
[5] F. Alduraiei, P. Manchanda, B. Pulido, et al. Fluorinated thin-film composite membranes for nonpolar organic solvent nanofiltration [J]. Sep Purif Technol, 2021, 279: 119777.
[6] C. Li, D. Hu, L. Liu, et al. Positively charged loose nanofiltration membranes prepared by a green ionic cross-link method [J]. J Membr Sci, 2022, 57(4): 3067-3082.
[7] J. Kamp, S. Emonds, J. Borowec, et al. On the organic solvent free preparation of ultrafiltration and nanofiltration membranes using polyelectrolyte complexation in an all aqueous phase inversion process [J]. J Membr Sci, 2021, 618: 118632.
[8] H. Ni, N. Wang, Y. Yang, et al. Positively-charged nanofiltration membrane constructed by polyethyleneimine/layered double hydroxide for Mg2+/Li+ separation [J]. Desalination, 2023, 548: 116256-116266.
[9] X. Kang, Y. Cheng, Y. Wen, et al. Bio-inspired co-deposited preparation of GO composite loose nanofiltration membrane for dye contaminated wastewater sustainable treatment [J]. J Hazard Mater, 2020, 400: 123121.
[10] K.J.M. Zhang. The Preparation of High-Performance and Stable MXene Nanofiltration Membranes with MXene Embedded in the Organic Phase [J]. Membranes 2022, 12(1): 2.
[11] Q. Xue, K. Zhang. MXene nanocomposite nanofiltration membrane for low carbon and long-lasting desalination [J]. J Membr Sci, 2021, 640: 119808.
[12] F. Yang, H. Sadam, Y. Zhang, et al. A de novo sacrificial-MOF strategy to construct enhanced-flux nanofiltration membranes for efficient dye removal [J]. Chem Eng Sci, 2020, 225: 115845.
[13] K. Banjerdteerakul, H. Peng, K. Li. COF-based nanofiltration membrane for effective treatment of wastewater containing pharmaceutical residues [J]. J Membr Sci, 2023, 681: 121780.
[14] S.Q. Han, W.H. You, S.H. Lv, et al. Ionic liquid modified COF nanosheet interlayered polyamide membranes for elevated nanofiltration performance [J]. Desalination, 2023, 548: 116300.
[15] K. Banjerdteerakul, H. Peng, K. Li. COF-based nanofiltration membrane for effective treatment of wastewater containing pharmaceutical residues [J]. J Membr Sci, 2023, 681: 121780.
[16] M. Kadhom, B. Deng. Metal-organic frameworks (MOFs) in water filtration membranes for desalination and other applications [J]. Appl Mater Today, 2018, 11: 219-230.
[17] 杜海洋,张文娟,温 书. 基于金属有机骨架(MOFs)的纳滤膜制备研究现状[J]. 膜科学与技术, 2022, 042: 154-162. 
[18] K. Ma, N. Wang, C. Wang, et al. Freezing assisted in situ growth of nano-confined ZIF-8 composite membrane for dye removal from water [J]. J Membr Sci, 2021, 632: 119352.
[19] H. Sun, N. Wang, X. Li, et al. Fabrication of MOF derivatives composite membrane via in-situ sulfurization for dye/salt separation [J]. J Membr Sci, 2022, 645: 120211.
[20] C. Qi, J. Li, Y. Shi, et al. ZIF-8 penetrating composite membrane for ion sieving [J]. J Solid State Chem, 2022, 313: 123281.
[21] Z. Jiang, H. Sun, Z. Qin, et al. Synthesis of novel ZnS nanocages utilizing ZIF-8 polyhedral template [J]. Chem. Commun, 2012, 48(30): 3620–3622.
[22] Y. He, Q. Fu, X. Li, et al. ZIF-8-derived photocatalyst membrane for water decontamination: From static adsorption-degradation to dynamic flow removal [J]. Sci Total Environ, 2022, 824: 153865. 
[23] J. Li, D. Yan, X. Zhang, et al. ZnS nanoparticles decorated on nitrogen-doped porous carbon polyhedra: a promising anode material for lithium-ion and sodium-ion batteries [J]. J Mater Chem. A, 2017, 5(38): 20428-20438. 
[24] S.H. Woo, B.R. Min, J.S. Lee. Change of surface morphology, permeate flux, surface roughness and water contact angle for membranes with similar physicochemical characteristics (except surface roughness) during microfiltration [J]. Sep Purif Technol, 2017, 187: 274-284.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号