ZIF-8/PSF复合膜的制备及其CO2分离性能研究
作者:程娟娟,金 花,李砚硕
单位: 1.宁波大学,材料科学与化学工程学院,宁波315211;2.浙江汇甬新材料有限公司,宁波315211
关键词: ZIF-8;聚砜;复合膜;CO2分离
出版年,卷(期):页码: 2024,44(3):10-20

摘要:
 由无机填料和有机基质组成的混合基质膜(MMMs)被广泛认为在CO2分离中发挥着重要作用。本研究开发了一种逐层复合工艺,即通过浸涂-热转换制备与载体结合强度高的ZIF-8薄膜层,而后涂覆PSF聚合物溶液使其与ZIF-8膜层紧密结合得到ZIF-8/PSF混合基质复合膜。ZIF-8/PSF复合膜展现出CO2优先渗透性能,对于等摩尔CO2/CH4混合气分离,CO2渗透率为1.5×10-8 mol/(m2·s·Pa),CO2/CH4的选择性为39。此外,ZIF-8/PSF复合膜具有优异的耐温性、耐压性、以及长周期稳定性。
 
  Mixed matrix membranes (MMMs), composed of inorganic fillers and organic substrates, are widely believed to play an important role in CO2 separation. In this study, a layer-by-layer composite technology was developed, that is, the ZIF-8 layer with high adhesive strength to the porous support was prepared by the dip coating and thermal conversion method, and then the ZIF-8/PSF mixed matrix composite membrane was achieved by coating PSF polymer solution on the ZIF-8 layer. Due to the excellent interfacial bonding strength between the membrane matrix and the coating layer, the ZIF-8/PSF composite membrane showed CO2-preferred permeability. For equimolar CO2/CH4 mixture separation, the CO2 permeance was 1.5×10-8mol m-2 s-1 Pa-1 and the selectivity of CO2/CH4 was 39. In addition, the ZIF-8/PSF membrane exhibited satisfactory temperature and pressure resistance, and durability.
程娟娟(1997-),女,重庆彭水人,硕士研究生,从事复合膜的制备及其气体分离性能研究

参考文献:
 [1] Askari M, Chung T S. Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes[J]. J. Membr. Sci., 2013, 444: 173-183.
[2] Choi Y S, Neši? S. Determining the corrosive potential of CO2 transport pipeline in high pCO2–water environments[J]. Int. J. Greenhouse Gas Control, 2011, 5(4): 788-797.
[3] Granite E J, O'Brien T. Review of novel methods for carbon dioxide separation from flue and fuel gases[J]. Fuel Process. Technol., 2005, 86(14-15): 1423-1434.
[4] Dantas T L P, Luna F M T, Silva Jr I J, et al. Carbon dioxide–nitrogen separation through pressure swing adsorption[J]. Chem. Eng. J., 2011, 172(2-3): 698-704.
[5] Bahamon D, Vega L F. Systematic evaluation of materials for post-combustion CO2 capture in a Temperature Swing Adsorption process[J]. Chem. Eng. J., 2016, 284: 438-447.
[6] Plaza M G, García S, Rubiera F, et al. Post-combustion CO2 capture with a commercial activated carbon: comparison of different regeneration strategies[J]. Chem. Eng. J., 2010, 163(1-2): 41-47.
[7] Nafisi V, Hägg M B. Gas separation properties of ZIF-8/6FDA-durene diamine mixed matrix membrane[J]. Sep. Purif. Technol., 2014, 128: 31-38.
[8] Hussin F, Aroua M K. Recent trends in the development of adsorption technologies for carbon dioxide capture: A brief literature and patent reviews (2014–2018)[J]. J. Cleaner Prod., 2020, 253: 119707.
[9] Baker R W, Low B T. Gas separation membrane materials: a perspective[J]. Macromolecules, 2014, 47(20): 6999-7013.
[10] Chen X, Liu G, Jin W. Natural gas purification by asymmetric membranes: An overview[J]. Green Energy Environ., 2021, 6(2): 176-192.
[11] Valappil R S K, Ghasem N, Al-Marzouqi M. Current and future trends in polymer membrane-based gas separation technology: A comprehensive review[J]. J. Ind. Eng. Chem., 2021, 98: 103-129.
[12] Dalane K, Dai Z, Mogseth G, et al. Potential applications of membrane separation for subsea natural gas processing: A review[J]. J. Nat. Gas Sci. Eng., 2017, 39: 101-117.
[13] Ma Y, Guo H, Selyanchyn R, et al. Hydrogen sulfide removal from natural gas using membrane technology: a review[J]. J. Mater. Chem. A., 2021, 9(36): 20211-20240.
[14] Bandehali S, Amooghin A E, Sanaeepur H, et al. Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation[J]. Sep. Purif. Technol., 2021, 278: 119513.
[15] Martin-Gil V, Ahmad M Z, Castro-Muñoz R, et al. Economic framework of membrane technologies for natural gas applications[J]. Sep. Purif. Rev., 2019, 48(4): 298-324.
[16] Natarajan P, Sasikumar B, Elakkiya S, et al. Pillared cloisite 15A as an enhancement filler in polysulfone mixed matrix membranes for CO2/N2 and O2/N2 gas separation[J]. J. Nat. Gas Sci. Eng., 2021, 86: 103720.
[17] Liu Q, Liu J, Li M, et al. Plasticization of a novel polysulfone based mixed matrix membrane with high-performance CO2 separation studied by positron annihilation[J]. Colloids Surf., A, 2022, 654: 130108.
[18] Widiastuti N, Caralin I S, Widyanto A R, et al. Annealing and TMOS coating on PSF/ZTC mixed matrix membrane for enhanced CO2/CH4 and H2/CH4 separation[J]. R. Soc. Open Sci., 2022, 9(6): 211371. 
[19] Guo X, Huang H, Ban Y, et al. Mixed matrix membranes incorporated with amine-functionalized titanium-based metal-organic framework for CO2/CH4 separation[J]. J. Membr. Sci., 2015, 478: 130-139.
[20] Ordonez M J C, Balkus Jr K J, Ferraris J P, et al. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes[J]. J. Membr. Sci., 2010, 361(1-2): 28-37.
[21] Attfield M P, Mason C R, et al. Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8[J]. J. Membr. Sci., 2013, 427: 48-62.
[22] Venna S R, Carreon M A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation[J]. J. Am. Chem. Soc., 2010, 132(1): 76-78.
[23] Shahid S, Nijmeijer K. Matrimid®/polysulfone blend mixed matrix membranes containing ZIF-8 nanoparticles for high pressure stability in natural gas separation[J]. Sep. Purif. Technol., 2017, 189: 90-100.
[24] Ch'ng C W M, Yeong Y F, Jusoh N, et al. High performance membranes containing zeolitic imidazolate framework‐8 and polysulfone for CO2 removal from CH4[J]. J. Chem. Technol. Biotechnol., 2022, 97(4): 995-1005.
[25] Fan S T, Qiu Z J, Xu R Y, et al. Ultrahigh carbon dioxide-selective composite membrane containing a γ-CD-MOF layer[J]. ACS Appl. Mater. Interfaces, 2021, 13(11): 13034-13043.
[26] Dai Z, Ansaloni L, Deng L. Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review[J]. Green Energy Environ., 2016, 1(2): 102-128.
[27] Zhang Y, Feng X, Yuan S, et al. Challenges and recent advances in MOF–polymer composite membranes for gas separation[J]. Inorg. Chem. Front., 2016, 3(7): 896-909.
[28] Ashtiani S, Sofer Z, Pr?ša F, et al. Molecular-level fabrication of highly selective composite ZIF-8-CNT-PDMS membranes for effective CO2/N2, CO2/H2 and olefin/paraffin separations[J]. Sep. Purif. Technol., 2021, 274: 119003.
[29] Jomekian A, Behbahani R M, Mohammadi T, et al. Innovative layer by layer and continuous growth methods for synthesis of ZIF-8 membrane on porous polymeric support using poly (ether-block-amide) as structure directing agent for gas separation[J]. Microporous Mesoporous Mater., 2016, 234: 43-54.
[30] Ma Q, Mo K, Gao S, et al. Ultrafast semi-solid processing of highly durable ZIF-8 membranes for propylene/propane separation[J]. Angew. Chem., 2020, 132(49): 22093-22098.
[31] Liu Y, Zeng G, Pan Y, et al. Synthesis of highly coriented ZIF-69 membranes by secondary growth and their gas permeation properties[J]. J. Membr. Sci., 2011, 379(1-2): 46-51.
[32] Huang A, Liu Q, Wang N, et al. Organosilica functionalized zeolitic imidazolate framework ZIF-90 membrane for CO2/CH4 separation[J]. Microporous Mesoporous Mater., 2014, 192: 18-22.
[33] Li Y S, Liang F Y, Bux H, et al. Molecular sieve membrane: supported metal–organic framework with high hydrogen selectivity[J]. Angew. Chem., Int. Ed., 2010, 49(3): 548-551.
[34] Pan Y, Wang B, Lai Z. Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability[J]. J. Membr. Sci., 2012, 421: 292-298.
[35] Huang A, Bux H, Steinbach F, et al. Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker[J]. Angew. Chem., 2010, 122(29): 5078-5081.
[36] Huang, A.; Wang, N.; Kong, C.; Caro, J., Organosilica-functionalized zeolitic imidazolate framework ZIF-90 membrane with high gas-separation performance. Angew. Chem. Int. Ed. 2012, 51 (42), 10551-10555.
[37] Huang A, Chen Y, Wang N, et al. A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation[J]. Chem. Commun., 2012, 48(89): 10981-10983.
[38] Y. Zhang, I.H. Musseman, J.P. Ferraris, K.J. Balkus Jr., Gas permeability properties of Matrimid (R) membranes containing the metal-organic framework Cu-BPY-HFS, J. Membr. Sci. 313 (2008) 170-181.
[39] B.D. Reid, F.A. Ruiz-Trevino, I.H. Musselman, K.J. Balkus, J.P. Ferraris, Gas permeability properties of polysulfone membranes containing the mesoporous molecular sieve MCM-41, Chem. Mater. 13 (2001) 2366-2373.
[40] Tin P S, Chung T S, Liu Y, et al. Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide[J]. Carbon, 2004, 42(15): 3123-3131.
[41] P.M. Budd, N.B. McKeown, B.S. Ghanem, K.J. Msayib, D. Fritsch, L. Starannikova,N. Belov, O. Sanfirova, Y. Yampolskii, V. Shantarovich, Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1, J Membr Sci., 325 (2008) 851-860.
[42] Khan I U, Othman M H D, Jilani A, et al. ZIF-8 based polysulfone hollow fiber membranes for natural gas purification[J]. Polym. Test., 2020, 84: 106415.
[43] Ahn J, Chung W J, Pinnau I, et al. Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation[J]. J. Membr. Sci., 2008, 314(1-2): 123-133.
[44] Dorosti F, Omidkhah M R, Pedram M Z, et al. Fabrication and characterization of polysulfone/polyimide–zeolite mixed matrix membrane for gas separation[J]. Chem. Eng. J., 2011, 171(3): 1469-1476.
[45] Tanh Jeazet H B, Sorribas S, Román-Marín J M, et al. Increased selectivity in CO2/CH4 separation with mixed‐matrix membranes of polysulfone and mixed-MOFs MIL-101(Cr) and ZIF-8[J]. Eur. J. Inorg. Chem., 2016, 2016(27): 4363-4367.
[46] Zornoza B, Seoane B, Zamaro J M, et al. Combination of MOFs and zeolites for mixed-matrix membranes[J]. ChemPhysChem, 2011, 12(15): 2781-2785.
[47] Jeazet H B T, Koschine T, Staudt C, et al. Correlation of gas permeability in a metal-organic framework MIL-101 (Cr)- polysulfone mixed-matrix membrane with free volume measurements by positron annihilation lifetime spectroscopy (PALS)[J]. Membranes, 2013, 3(4): 331-353.
[48] Shahid S, Nijmeijer K. Performance and plasticization behavior of polymer-MOF membranes for gas separation at elevated pressures[J]. J. Membr. Sci., 2014, 470: 166-177.
[49] Song Q, Nataraj S K, Roussenova M V, et al. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation[J]. Energy Environ. Sci., 2012, 5(8): 8359-8369.
[50] Hwang S, Chi W S, Lee S J, et al. Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation[J]. J. Membr. Sci., 2015, 480: 11-19.
[51] Fan Y, Yu H, Xu S, et al. Zn (II)-modified imidazole containing polyimide/ZIF-8 mixed matrix membranes for gas separations[J]. J. Membr. Sci., 2020, 597: 117775.
[52] Jomekian A, Behbahani R M, Mohammadi T, et al. CO2/CH4 separation by high performance co-casted ZIF-8/Pebax-1657/PES mixed matrix membrane[J]. J. Nat. Gas Sci. Eng., 2016, 31: 562-574.
[53] Gao Y, Qiao Z, Zhao S, et al. In situ synthesis of polymer grafted ZIFs and application in mixed matrix membrane for CO2 separation[J]. J. Mater. Chem. A, 2018, 6(7): 3151-3161.
[54] Amedi H R, Aghajani M. Aminosilane-functionalized ZIF-8/PEBA mixed matrix membrane for gas separation application[J]. Microporous Mesoporous Mater., 2017, 247: 124-135.
[55] Robeson L M. The upper bound revisited[J]. J. Membr. Sci., 2008, 320(1-2): 390-400.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号