电化学辅助煤基炭膜活化过硫酸氢盐去除水体中的磺胺甲恶唑 |
作者:潘宗林,徐 静,马焕然,李怀北,范新飞,宋成文,王同华 |
单位: 1.大连海事大学 环境科学与工程学院,大连 116026;2.大连理工大学化工学院,精细化工国家重点实验室,炭膜及多孔炭材料课题组,大连,116024 |
关键词: 键词:煤基炭膜;电化学活化;过硫酸氢盐;磺胺甲噁唑 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2024,44(3):30-37 |
摘要: |
本工作构建了电化学辅助煤基炭膜活化过硫酸氢盐(E-CM-PMS)体系,用于水体中磺胺甲噁唑(SMX)的去除。表征了煤基炭膜的形貌与结构,系统考察了运行条件对SMX去除效率的影响,探究了SMX降解机理以及该体系在不同水质背景下去除SMX的适用性。研究表明,在外加+1.5 V电压下,煤基炭膜对PMS的活化效率显著增强,从而提升了系统对SMX的去除效率。在PMS添加量为0.2 g/L,流速为0.4 mL/min,pH为6.52时,该系统对SMX的去除率高达97%,并且在不同水质背景下均表现出较优的去除性能。机理分析表明SMX的高效去除归功于非自由基(电子转移和1O2)和自由基(•OH、SO4•-)机理的共同作用。 |
An electrochemical enhanced coal-based carbon membrane (CM) peroxymonosulfate activation (E-CM-PMS) system was constructed for the removal of sulfamethoxazole (SMX) from water. The morphology and structure of CM were characterized. The effects of operating conditions on the removal efficiency of SMX were systematically investigated. The SMX degradation mechanism and the applicability of E-CM-PMS for SMX removal from different water matrixes were also investigated. Results show that the PMS activation efficiency of CM is significantly enhanced under the applied voltage of +1.5V, thus improving its SMX removal efficiency. When the PMS dosage is 0.2 g/L, the flow rate is 0.4 mL/min, and the pH value is 6.52, the SMX removal rate of the system is up to 97%, and it also exhibits good applicability for SMX removal in different water matrixes. The mechanism analysis reveals that the efficient degradation of SMX during the treatment is owing to the synergistic effect of non-free radical (direct electron transfer and 1O2) and free radical (•OH, SO4•-) mechanism. |
基金项目: |
大连市科技创新基金2021JJ12SN43,中央高校基本科研业务费3132023163,3132023504 |
作者简介: |
潘宗林(1990-),男,安徽黄山人,博士,讲师,主要从事膜法水处理领域的相关研究 |
参考文献: |
[1] Shahid MK, Kashif A, Fuwad A, et al. Current advances in treatment technologies for removal of emerging contaminants from water – A critical review[J]. Coord Chem Rev, 2021, 442: 213993. [2] Li N, Lu X, He M, et al. Catalytic membrane-based oxidation-filtration systems for organic wastewater purification: A review[J]. J Hazard Mater, 2021, 414: 125478. [3] Rosman N, Salleh WNW, Mohamed MA, et al. Hybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue[J]. J Colloid Interf Sci, 2018, 532: 236-260. [4] Yu C, Xiong Z, Zhou H, et al. Marriage of membrane filtration and sulfate radical-advanced oxidation processes (SR-AOPs) for water purification: Current developments, challenges and prospects[J]. Chem Eng J, 2022, 433: 133802. [5] Pan Z, Yu F, Li L, et al. Low-cost electrochemical filtration carbon membrane prepared from coal via self-bonding[J]. Chem Eng J, 2020, 385: 123928. [6] Ma H, Xu S, Zhang X, et al. N-doped coal-based carbon membrane coupling peroxymonosulfate activation for bisphenol A degradation: The role of micro-carbon structure and nitrogen species[J]. J Clean Prod, 2023, 423: 138713. [7] Li C, Zhu X, Yang S, et al. Novel strategy for the efficient degradation of organic contaminants using porous graphite electrodes: Synergistic mechanism of anodic and cathodic reactions[J]. Chem Eng J, 2022, 429: 132340. [8] Liang C, Huang CF, Mohanty N, et al. A rapid spectrophotometric determination of persulfate anion in ISCO[J]. Chemosphere, 2008, 73: 1540-1543. [9] Pan Z, Yu F, Li L, et al. Electrochemical filtration carbon membrane derived from coal for wastewater treatment: Insights into the evolution of electrical conductivity and electrochemical performance during carbonization[J]. Sep Purif Technol, 2020, 247: 116948. [10] Zhai X, Chen X, Shi X, et al. Simultaneously enhancing purification, catalysis and in situ separation in a continuous cross-flow catalytic degradation process of multi-component organic pollutants by a double-layer PVDF composite membrane[J]. J Environ Chem Eng, 2022, 10: 107160. [11] Ahmadi M, Ghanbari F Combination of UVC-LEDs and ultrasound for peroxymonosulfate activation to degrade synthetic dye: influence of promotional and inhibitory agents and application for real wastewater[J]. Environ Sci Pollut Res Int, 2018, 25: 6003-6014. [12] Ao X, Liu W Degradation of sulfamethoxazole by medium pressure UV and oxidants: Peroxymonosulfate, persulfate, and hydrogen peroxide[J]. Chem Eng J, 2017, 313: 629-637. [13] Yang D, Wang Y, Zhao J, et al. Strong coupling of super-hydrophilic and vacancy-rich g-C3N4 and LDH heterostructure for wastewater purification: Adsorption-driven oxidation[J]. J Colloid Interf Sci, 2023, 639: 355-368. [14] Song H, Yan L, Jiang J, et al. Electrochemical activation of persulfates at BDD anode: Radical or nonradical oxidation?[J]. Water Res, 2018, 128: 393-401. [15] Wang Y, Wei N, Zeng J, et al. Nitrogen-doped carbon nanotube modified ultrafiltration membrane activating peroxymonosulfate for catalytic transformation of phosphonate and mitigation of membrane fouling[J]. Sep Purif Technol, 2023, 314: 123522. [16] Wang Y, Zhou C, Wu J, et al. Insights into the electrochemical degradation of sulfamethoxazole and its metabolite by Ti/SnO2-Sb/Er-PbO2 anode[J]. Chinese Chem Lett, 2020, 31: 2673-2677. [17] Song H, Yan L, Wang Y, et al. Electrochemically activated PMS and PDS: Radical oxidation versus nonradical oxidation[J]. Chem Eng J, 2020, 391: 123560. [18] Ma H, Li X, Pan Z, et al. MOF derivative functionalized titanium-based catalytic membrane for efficient sulfamethoxazole removal via peroxymonosulfate activation[J]. J Membr Sci, 2022, 661: 120924. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号