复分解电渗析绿色高效制备醋酸锂 |
作者:卫新来,李 旭,吴 克,王 研 |
单位: 1.合肥大学 生物食品与环境学院,合肥 230601; 2.污水净化与生态修复材料安徽省重点实验室,合肥 230088 |
关键词: 醋酸锂;复分解电渗析;绿色生产 |
DOI号: |
分类号: TQ028;X703 |
出版年,卷(期):页码: 2024,44(3):115-123 |
摘要: |
醋酸锂在锂离子电池、生物制药和陶瓷玻璃等生产制备中有广泛应用,但传统醋酸锂制备方法会带来严重的环境污染问题。因此,开发一种环保、高效的醋酸锂绿色生产工艺显得尤为重要。本研究以初级锂盐硫酸锂为原料,采用复分解电渗析法一步制备醋酸锂。研究了初始醋酸钠浓度、操作电压、初始硫酸锂浓度对复分解电渗析性能的影响,并对醋酸锂产品进行评价与经济性分析。实验结果表明,增加初始醋酸钠浓度可以提高醋酸锂产品浓度;提高操作电压可以缩短反应时间,但醋酸锂产品浓度没有明显变化;同比例提高初始的硫酸锂与醋酸钠浓度,可以显著提升醋酸锂产品的最终浓度,提升系统的产能。在操作电压为20 V,初始醋酸钠浓度为0.6 mol/L,初始硫酸锂浓度为0.3 mol/L的条件下,制备的醋酸锂的工艺过程成本约为5590元/t CH?COOLi。复分解电渗析工艺具有工艺流程简单、能耗低、环境友好等明显优势,这对电驱动膜分离在锂盐的生产制备中具有重要参考意义。 |
Lithium acetate is a commonly utilized ingredient in the fabrication and formulation of lithium-ion batteries, biopharmaceuticals, and ceramic glass, among other applications. Nevertheless, the conventional technique for manufacturing lithium acetate poses significant environmental contamination challenges. Thus, it is crucial to devise an eco-friendly and effective green approach for producing lithium acetate. The one-step electrodialysis metathesis (EDM) process used to produce lithium acetate from the primary lithium salt, lithium sulphate. The study investigated the effects of initial sodium acetate concentration, operating voltage, and initial lithium sulfate concentration on EDM performance. Furthermore, the research assessed the quality of the lithium acetate produced and conducted an economic analysis. The experimental results indicated that increasing the initial concentration of sodium acetate can enhance the concentration of lithium acetate product. Raising the operating voltage can reduce the reaction time, but it did not appear to affect the concentration of lithium acetate product. A significant rise in the ultimate concentration of lithium acetate product and an increase in the system's capacity can be achieved by elevating the initial concentrations of lithium sulfate and sodium acetate concurrently. The cost to produce lithium acetate was roughly 5590 ¥/t CH?COOLi, with an operating voltage of 20 V, 0.6 mol/L of sodium acetate and 0.3 mol/L of lithium sulfate. EDM's electrodialysis process provided obvious advantages, including simple process flow, low energy consumption and environmental safety. These benefits played a significant role in the application of electrically driven membrane separation in the manufacturing and preparation of lithium salts. |
基金项目: |
国家重点研发计划(2020YFC1908601),合肥学院人才科研基金项目(21-22RC31)。 |
作者简介: |
卫新来(1983- ),男,安徽六安,博士,高级实验师,研究方向为膜分离和水处理技术。 |
参考文献: |
[1] Zhang C C, Zhang F S, Zhu N, et al. A carbothermic hybrid synthesized using waste halogenated plastic in sub/supercritical CO2 and its application for lithium recovery[J]. Environ Res, 2023, 216: 114777. [2] Choubey P K, Kim M, Srivastava R R, et al. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources[J]. Miner Eng, 2016, 89: 119-137. [3] Wei X L, Gao W J, Wang Y, et al. A green and economical method for preparing lithium hydroxide from lithium phosphate[J]. Sep Purif Tegchnol, 2022, 280: 119909. [4] Jiang Y, Lu C, Liu X, et al. Lithium acetate modified PU/graphene composites as separator for advanced Li‐ion batteries[J]. Micro Nano Lett, 2020, 15(4): 213-217. [5] Yahya M Z A, Arof A K. Conductivity and X-ray photoelectron studies on lithium acetate doped chitosan films[J]. Carbohyd Polym, 2004, 55(1): 95-100. [6] Yuan L X, Wang Z H, Zhang W X, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries[J]. Environ Sci, Technol, 2011, 4(2): 269-284. [7] Vikstrom H, Davidsson S, Hook M. Lithium availability and future production outlooks[J]. Appl Energ, 2013, 110: 252-266. [8] Meshram P, Pandey B D, Mankhand T R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review[J]. Hydrometallurgy, 2014, 150: 192-208. [9] Swain B. Recovery and recycling of lithium: A review[J]. Sep Purif Technol, 2017, 172: 388-403. [10] Ran J, Wu L, He Y, et al. Ion exchange membranes: New developments and applications[J]. J Membrane Sci, 2017, 522: 267-291. [11] Campione A, Gurreri L, Ciofalo M, et al. Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications[J]. Desalination, 2018, 434: 121-160. [12] 李 帅, 王建友, 冯云华. 复分解电渗析清洁生产谷氨酸钠新工艺[J]. 化工进展, 2018, 37(09): 3682-3690. [13] 余 超, 刘飞峰, 徐龙乾, 等. 新型电渗析工艺的技术发展与应用[J]. 工业水处理, 2021, 41(1): 30-37. [14] Jaroszk H, Dydo P. Potassium nitrate synthesis by electrodialysis-metathesis: The effect of membrane type[J]. J Membrane Sci, 2018, 549: 28-37. [15] Li P F, Chen Q B, Wang J, et al. Converting softening nanofiltration brine into high-solubility liquid salts (HSLS) via electrodialysis metathesis: effect of membrane type[J]. Sep Purif Technol, 2021, 267: 118619. [16] Camacho L M, Fox J A, Ajedegba J O. Optimization of electrodialysis metathesis (EDM) desalination using factorial design methodology[J]. Desalination, 2017, 403: 136-143. [17] Zhang X, Han X, Yan X, et al.Continuous synthesis of high purity KNO3 through electrodialysis metathesis[J]. Sep Purif Technol, 2019, 222: 85-91. [18] Han X, Yan X, Wang X, et al. Preparation of chloride-free potash fertilizers by electrodialysis metathesis[J]. Sep Purif Technol, 2018, 191: 144-152. [19] Gao W, Zhao H, Wwei X, et al. A Green and Economical Method for Preparing Potassium Glutamate through Electrodialysis Metathesis[J]. Ind Eng Chem Res, 2022, 61(3): 1486-1493. [20] 郭春禹, 肖 东, 刘 芬, 等. 均相电渗析膜堆淡化性能测试与分析[J]. 膜科学与技术, 2019, 39(02): 81-87. [21] Zhong C Y, Lv Y P, Wen W F, et al. Sustainable Production of Lithium Acetate by Bipolar Membrane Electrodialysis Metathesis[J]. ACS Sustainable Chem Eng, 2022, 10(18): 6045-6056. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号