FeCl3对AnMDBR废水净化效能和膜污染影响的研究 |
作者:何 蕾,曾敏华,杨枝盟,杨海洋,余华荣,瞿芳术 |
单位: 1.广州大学,土木工程学院,广州510000 |
关键词: AnMDBR;FeCl3;污泥特性;膜污染;微生物群落 |
DOI号: |
分类号: TQ028;X703 |
出版年,卷(期):页码: 2024,44(3):124-132 |
摘要: |
废水的资源化回用是目前废水处理的重点。本文考察了在高温环境下(55 ℃),投加低浓度(20 mg/L)、中浓度(50 mg/L)和高浓度(100 mg/L)FeCl3对厌氧膜蒸馏生物反应器(AnMDBR)处理废水的污染物净化、产水效能和膜污染的影响及相关机理。结果表明,三种FeCl3投量对AnMDBR中COD、NH4+-N和P的去除效能没有显著差异,平均去除率分别达到98.12%、81.80%和99.99%以上。然而,投加FeCl3能够提升产水通量, 通量增幅依次为50 mg/L>100 mg/L>20 mg/L。这是因为适当投加FeCl3改变了污泥特性,增大了Zeta电位、颗粒粒径和EPS含量,同时减少了SMP浓度,从而使污泥更易团聚。此外,污泥及其代谢产物在FeCl3的混凝作用下在膜表面形成更为疏松多孔的滤饼层结构,但过高投量会加剧膜的无机污染。另外,投加FeCl3提高了微生物群落中Methanothermobacter的相对丰度,有利于产甲烷过程进行。本研究结果为投加铁盐混凝剂强化AnMDBR废水处理效能提供支持。 |
Resourceful reuse of wastewater is currently the focus of wastewater treatment. In this study, the impact of contaminant purification, water production, membrane fouling, and underlying mechanisms within a high-temperature (55°C) anaerobic membrane distillation bioreactor (AnMDBR) was examined, using three FeCl3 dosages (20 mg/L, 50 mg/L, and 100 mg/L). The results showed that there was no significant difference in the removal efficiencies of COD, NH4+-N and P across the three FeCl3 dosages, with average removal rates exceeding 98.12%, 81.80% and 99.99%, respectively. However, an increase in water production was observed, with the order of effect being 50 mg/L > 100 mg/L > 20 mg/L. This phenomenon was attributed to the modification of sludge characteristics by FeCl3, which included the augmentation of Zeta potential, particle size, and EPS concentration, while simultaneously leading to a reduction in SMP concentration. The alteration facilitated sludge agglomeration. Additionally, the formation of a loose, porous cake layer on the fouled membrane is achieved through the proper addition of FeCl3. Nevertheless, inorganic fouling of the membrane was exacerbated by excessive FeCl3 addition. Furthermore, FeCl3 addition increased the relative abundance of Methanothermobacter in the microbial community of AnMDBR, thereby promoting the methanogenesis process. These findings provide support for improving the wastewater treatment performance within iron salt-assist AnMDBR. |
基金项目: |
国家自然科学基金资助项目(62207801);广州校联基金(202201020172) |
作者简介: |
何蕾(1998—,),女,湖南娄底,主要研究方向为膜法水处理研究,通讯联系作者:瞿芳术,Email:qufs@gzhu.edu.cn |
参考文献: |
[1] K.C. Wijekoon, F.I. Hai, J. Kang, W.E. Price, W. Guo, H.H. Ngo, T.Y. Cath, L. D. Nghiem.A novel membrane distillation-thermophilic bioreactor system: biological stability and trace organic compound removal[J]. Bioresour. Technol., 2014 ,159:334–341. [2]Huang Z., Ong S.L., Ng H.Y.. Performance of submerged anaerobic membrane bioreactor at different SRTs for domestic wastewater treatment[J]. Biotechnol. ,2013,164 (1):82-90. [3] K.C. Wijekoon, C. Visvanathan, A. Abeynayaka. Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor[J]. Bioresour. Technol., 2011, 102:5353–5360. [4] L.D. Tijing, Y.C. Woo, J.S. Choi, S. Lee, S.H. Kim, H.K. Shon. Fouling and its control in membrane distillation-a review[J]. Membr. Sci., 2015, 475:215–244. [5] Fan F., Zhou H., Husain H.. Identification of wastewater sludge characteristics to predict critical flux for membrane bioreactor processes[J]. Water Res., 2006, 40:205-212. [6] Dagnew M., Parker W., Seto P.. Anaerobic membrane bioreactors for treating waste activated sludge: short term membrane fouling characterization and control tests[J]. Membr. Sci. , 2012, 421-422:103-110. [7] Koseoglu H., Yigit N.O., Iversen V., Drews A., Kitis M., Lesjean B., Kraume M.. Effects of several different flux enhancing chemicals on filterability and fouling reduction of membrane bioreactor (MBR) mixed liquors[J]. Membr. Sci., 2008,320: 57-64. [8] Ji J., Qiu J., Wai N., Wong F., Li Y. . Influence of organic and inorganic flocculants on physicalechemical properties of biomass and membrane-fouling rate[J]. Water Res., 2010, 44:1627-1635. [9] Fan F., Zhou H., Husain H.. Use of chemical coagulants to control fouling potential for wastewater membrane bioreactor processes[J]. Water Environ. Res. ,2007,79:952-957. [10] Q. Dong, W. Parker, M. Dagnew . Impact of FeCl3 dosing on AnMBR treatment of municipal wastewater[J]. Water Res.,2015,80: 281-293. [11] 张玲,郑西来,佘宗莲,杨居园,谢经良.FeCl3及AlCl3对中温厌氧消化系统产生H2S的抑制作用[J].环境工程学报,2015,9(12):5907-5914. [12] Jacob P, Phungsai P, Fukushi K, et al. Direct contact membrane distillation for anaerobic effluent treatment [J]. Membr. Sci., 2015, 475: 330-339. [13] Palakodeti A, Azman S, Rossi B, et al. A critical review of ammonia recovery from anaerobic digestate of organic wastes via stripping [J]. Renew. Sust. Energ. Rev., 2021, 143. [14] Vinardell S, Astals S, Peces M, et al. Advances in anaerobic membrane bioreactor technology for municipal wastewater treatment: A 2020 updated review [J]. Renew. Sust. Energ. Rev., 2020, 130. [15] Yao M, Woo Y C, Ren J, et al. Volatile fatty acids and biogas recovery using thermophilic anaerobic membrane distillation bioreactor for wastewater reclamation [J]. Environ. Manage., 2019, 231: 833-842. [16] Arabi S, Nakhla G. Impact of cation concentrations on fouling in membrane bioreactors[J]. Membr. Sci., 2009, 343(1): 110-8. [17] 苗英霞,王静,张雨山.含盐污泥厌氧消化过程中金属离子对硫化氢产气率的抑制作用[J].工业水处理,2010,30( 3) : 16-19. [18] J. Niu, X. Kong, Q. Che, Q. Li, J. Yuan, J. Liu, Y. Zhang, et al. Insights into the effects of micro and nanoscale Fe-0 on elimination of excessive acidification during anaerobic digestion of the organic fraction of municipal solid waste: similarities and differences in reactor performance and syntrophic metabolism[J]. Fuel.,320(2022) 123923. [19] 吕晓龙. 疏水膜的污染、润湿与干燥探讨[J]. 膜科学与技术, 2020, 40(01):196-203. [20] Wang F, Zhu H, Zhang H, et al. Effect of surface hydrophilic modification on the wettability, surface charge property and separation performance of PTFE membrane [J]. J. Water Process Eng., 2015, 8: 11-18. [21] Schmitt J, Flemming H C. FTIR-spectroscopy in microbial and material analysis[J]. Int. Biodeter. Biodegr., 1998, 41(1):1-11. [22] Barth. Infrared spectroscopy of proteins [J]. Biochim Biophys Acta, 2007, 1767(9): 1073-1101. [23] Fu F-N, Deoliveira D B, Trumble W R, et al. Secondary Structure Estimation of Proteins Using the Amide III Region of Fourier Transform Infrared Spectroscopy: Application to Analyze Calcium-Binding-Induced Structural Changes in Calsequestrin [J]. Appl. Spectrosc., 2016, 48(11): 1432-1441. [24] Qi Q X,Sun C,Zhang J X,et al. Internalenhancement mechanism of biochar with graphene structure in anaerobic digestion:the bioavailability of trace elements and potential direct interspecies electron transfer[J]. Chem. Eng. J.,2021,406:126833. [25] Chachkhiani M,Dabert P,Abzianidze T,et al.16Sr DNA characterisation of bacterial and archaeal communities during start-up of anaerobic thermophilic digestion of cattle manure[J]. Bioresour. Technol.,2004,93(3):227-232. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号