膜反应器用于二氧化碳加氢转变燃料的研究进展 |
作者:许月阳,薛志刚,柳 波,周荣飞 |
单位: 1国家能源集团科学技术研究院有限公司 清洁高效燃煤发电与污染控制国家重点实验室 南京 210031;2南京工业大学国家特种分离膜工程技术研究中心,南京 210009 |
关键词: 膜反应器;CO2加氢;甲醇; 燃料;过程强化;脱水膜 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2024,44(3):143-152 |
摘要: |
二氧化碳加氢转化甲醇等高值化利用技术不仅可以实现CO2的循环利用,还能产生显著的社会与经济价值,是实现“碳达峰、碳中和”国家战略的重要途径。CO2加氢制甲醇催化剂的研究已趋成熟,但受限于热力学平衡的限制和副产物水诱导的催化剂失活问题,CO2转化效率仍低于预期。膜反应器已成功应用于克服CO2加氢反应的热力学限制,起到了显著的过程强化作用,大幅提升了CO2资源化利用效率。面向CO2加氢转化甲醇等高值化利用需求,系统阐述了膜反应器中关键膜材料的分离性能对反应过程中反应性能的强化作用,分析了膜反应器在CO2加氢转化甲醇工艺中的机遇和挑战。 |
High-value CO2 utilization technologies, such as CO2 hydrogenation to methanol, can not only achieve CO2 recycling, but also generate significant social and economic value, which is an important way to achieve carbon neutrality. Research on catalysts for CO2 hydrogenation to methanol has matured, but the CO2 conversion efficiency is still lower than expected due to the limitations of thermodynamic equilibrium and catalyst deactivation induced by by-product water. Membrane reactor has been applied to overcome the thermodynamic limitation of CO2 hydrogenation reaction, which has played an important role in process intensification and greatly improved the efficiency of CO2 utilization. Against this background, the role of various membrane separation performances in improving the reaction properties in membrane reactors was systematically reviewed. The future opportunities and challenges of membrane reactors in CO2 hydrogenation to methanol are also presented. |
基金项目: |
作者简介: |
许月阳:(1979-),江苏泰州人,主要从事煤电污染物控制及资源化技术开发与工程应用研究 |
参考文献: |
[1] Kätelhön A, Meys R, Deutz S, et al. Climate change mitigation potential of carbon capture and utilization in the chemical industry[J]. Proc. Natl. Acad. Sci., 2019, 116(23): 11187–11194. [2] Zhang X, Zhang G, Song C, et al. Catalytic conversion of carbon dioxide to methanol: Current status and future perspective[J]. Front. Energy Res., 2021, 8: 621119. [3] Shih C F, Zhang T, Li J, et al. Powering the future with liquid sunshine[J]. Joule, 2018, 2(10): 1925–1949. [4] Zhong J, Yang X, Wu Z, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chem. Soc. Rev., 2020, 49(5): 1385–1413. [5] Navarro-Jaén S, Virginie M, Bonin J, et al. Highlights and challenges in the selective reduction of carbon dioxide to methanol[J]. Nat. Rev. Chem., 2021, 5(8): 564–579. [6] Goeppert A, Czaun M, Jones J-P, et al. Recycling of carbon dioxide to methanol and derived products – closing the loop[J]. Chem. Soc. Rev., 2014, 43(23): 7995–8048. [7] Saravanan A, Senthil Kumar P, Vo D., et al. A comprehensive review on different approaches for CO2 utilization and conversion pathways[J]. Chem. Eng. Sci., 2021, 236: 116515. [8] Kothandaraman J, Goeppert A, Czaun M, et al. Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst[J]. J. Am. Chem. Soc., 2016, 138(3): 778–781. [9] Thrane J, Kuld S, Nielsen N D, et al. Methanol‐assisted autocatalysis in catalytic methanol synthesis[J]. Angew. Chem. Int. Ed., 2020, 59(41): 18189–18193. [10] Zabilskiy M, Sushkevich V L, Palagin D, et al. The unique interplay between copper and zinc during catalytic carbon dioxide hydrogenation to methanol[J]. Nat. Commun., 2020, 11(1): 2409. [11] Bellotti D, Rivarolo M, Magistri L, et al. Feasibility study of methanol production plant from hydrogen and captured carbon dioxide[J]. J. CO2 Util., 2017, 21: 132–138. [12] 邢卫红,陈日志,姜 红等. 无机膜与膜反应器[M]// 北京:化学工业出版社,2019:339. [13] Biswal T, Shadangi K P, Sarangi P K, et al. Conversion of carbon dioxide to methanol: A comprehensive review[J]. Chemosphere, 2022, 298: 134299. [14] Jiang X, Nie X, Guo X, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chem. Rev., 2020, 120(15): 7984–8034. [15] Ren M, Zhang Y, Wang X, et al. Catalytic hydrogenation of CO2 to methanol: A review[J]. Catalysts, 2022, 12(4): 403. [16] Lee W J, Li C, Prajitno H, et al. Recent trend in thermal catalytic low temperature CO2 methanation: A critical review[J]. Catal. Today, 2021, 368: 2–19. [17] Ra E C, Kim K Y, Kim E H, et al. Recycling carbon dioxide through catalytic hydrogenation: Recent key developments and perspectives[J]. ACS Catal., 2020, 10(19): 11318–11345. [18] Huš M, Dasireddy V D B C, Strah Štefan?i? N, et al. Mechanism, kinetics and thermodynamics of carbon dioxide hydrogenation to methanol on Cu/ZnAl2O4 spinel-type heterogeneous catalysts[J]. Appl. Catal. B: Environ., 2017, 207: 267–278. [19] Poormohammadian S J, Bahadoran F, Vakili-Nezhaad G R. Recent progress in homogeneous hydrogenation of carbon dioxide to methanol[J]. Rev. Chem. Eng., 2023, 39(5): 783–805. [20] Wallace W T, Hayward J S, Ho C-Y, et al. Triethylamine–water as a switchable solvent for the synthesis of Cu/ZnO catalysts for carbon dioxide hydrogenation to methanol[J]. Top. Catal., 2021, 64(17–20): 984–991. [21] Schwiderowski P, Ruland H, Muhler M. Current developments in CO2 hydrogenation towards methanol: A review related to industrial application[J]. Curr. Opin. Green Sust., 2022, 38: 100688. [22] Kar S, Kothandaraman J, Goeppert A, et al. Advances in catalytic homogeneous hydrogenation of carbon dioxide to methanol[J]. J. CO2 Util., 2018, 23: 212–218. [23] Dybbert V, Fehr S M, Klein F, et al. Oxidative Fluorination of Cu/ZnO methanol catalysts[J]. Angew. Chem. Int. Ed., 2019, 58(37): 12935–12939. [24] Wang Y, Kattel S, Gao W, et al. Exploring the ternary interactions in Cu/ZnO/ZrO2 catalysts for efficient CO2 hydrogenation to methanol[J]. Nat. Commun., 2019, 10(1): 1166. [25] Li D, Xu F, Tang X, et al. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol[J]. Nat. Catal., 2022, 5(2): 99–108. [26] Martin O, Martín A J, Mondelli C, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angew. Chem. Int. Ed., 2016, 55(21): 6261–6265. [27] Li S, Wang Y, Yang B, et al. A highly active and selective mesostructured Cu/AlCeO catalyst for CO2 hydrogenation to methanol[J]. Appl. Catal. A: Gen., 2019, 571: 51–60. [28] Dang S, Yang H, Gao P, et al. A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation[J]. Catal. Today, 2019, 330: 61-75. [29] Muradov N, Vezirolu T. From hydrocarbon to hydrogen-carbon to hydrogen economy[J]. Int. J. Hydrogen Energy, 2005, 30(3): 225–237. [30] Wu Q, Liang S, Zhang T, et al. Current advances in bimetallic catalysts for carbon dioxide hydrogenation to methanol[J]. Fuel, 2022, 313: 122963. [31] Bansode A, Urakawa A. Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products[J]. J. Catal., 2014, 309: 66–70. [32] Hu J, Yu L, Deng J, et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol[J]. Nat. Catal., 2021, 4(3): 242–250. [33] Ghosh S, Sebastian J, Olsson L, et al. Experimental and kinetic modeling studies of methanol synthesis from CO2 hydrogenation using In2O3 catalyst[J]. Chem. Eng. J., 2021, 416: 129120. [34] Sato K, Sugimoto K, Sekine Y, et al. Application of FAU-type zeolite membranes to vapor/gas separation under high pressure and high temperature up to 5MPa and 180°C[J]. Microporous Mesoporous Mater., 2007, 101(1–2): 312–318. [35] Sawamura K-I, Shirai T, Takada M, et al. Selective permeation and separation of steam from water–methanol–hydrogen gas mixtures through mordenite membrane[J]. Catal. Today, 2008, 132(1–4): 182–187. [36] Sawamura K, Izumi T, Kawasaki K, et al. Reverse-selective microporous membrane for gas separation[J]. Chem. – Asian J., 2009, 4(7): 1070–1077. [37] Wang N, Liu Y, Huang A, et al. Hydrophilic SOD and LTA membranes for membrane-supported methanol, dimethylether and dimethylcarbonate synthesis[J]. Microporous Mesoporous Mater., 2015, 207: 33–38. [38] Raso R, Tovar M, Lasobras J, et al. Zeolite membranes: Comparison in the separation of H2O/H2/CO2 mixtures and test of a reactor for CO2 hydrogenation to methanol[J]. Catal. Today, 2021, 364: 270–275. [39] Deng Y, Li Z, Chen T, et al. Low-cost and facile fabrication of defect-free water permeable membrane for CO2 hydrogenation to methanol[J]. Chem. Eng. J., 2022, 435: 133554 [40] Song G, Zhou W, Li C, et al. Semi-hollow LTA zeolite membrane for water permeation in simulated CO2 hydrogenation to methanol[J]. J. Membr. Sci., 2023, 678: 121666. [41] Hirota Y, Yamamoto Y, Nakai T, et al.Application of silylated ionic liquid-derived organosilica membranes to simultaneous separation of methanol and H2O from H2 and CO2 at high temperature[J]. J. Membr. Sci., 2018, 563: 345–350. [42] Li Z, Deng Y, Wang Z, et al. A superb water permeable membrane for potential applications in CO2 to liquid fuel process[J]. J. Membr. Sci., 2021, 639: 119682. [43] Struis R P W J, Stucki S. Verification of the membrane reactor concept for the methanol synthesis[J]. Appl. Catal. A: Gen., 2001, 216(1–2): 117–129. [44] Barbieri G, Marigliano G, Golemme G, et al.Simulation of CO2 hydrogenation with CH3OH removal in a zeolite membrane reactor[J]. Chem. Eng. J., 2002, 85(1): 53–59. [45] Struis R P W J, Stucki S, Wiedorn M. A membrane reactor for methanol synthesis[J]. J. Membr. Sci., 1996, 113(1): 93–100. [46] Pham Q H, Goudeli E, Scholes C A. Selective separation of water and methanol from hydrogen and carbon dioxide at elevated temperature through polyimide and polyimidazole based membranes[J]. J. Membr. Sci., 2023, 686: 121990. [47] Chen G. Methanol synthesis from CO2 using a silicone rubber/ceramic composite membrane reactor[J]. Sep. Purif. Technol., 2004, 34(1–3): 227–237. [48] Farsi M, Jahanmiri A. Application of water vapor-permselective alumina–silica composite membrane in methanol synthesis process to enhance CO2 hydrogenation and catalyst life time[J]. J. Ind. Eng. Chem., 2012, 18(3): 1088–1095. [49] Farsi M, Jahanmiri A. Methanol production in an optimized dual-membrane fixed-bed reactor[J]. Chem. Eng. Process., 2011, 50(11): 1177–1185. [50] Morigami Y, Kondo M, Abe J, et al. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane[J]. Sep. Purif. Technol., 2001, 25(1–3): 251–260. [51] Gallucci F, Paturzo L, Basile A. An experimental study of CO2 hydrogenation into methanol involving a zeolite membrane reactor[J]. Chem. Eng. Process., 2004, 43(8): 1029–1036. [52] Li H, Qiu C, Ren S, et al. Na+ -gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels[J]. Science, 2020, 367(6478): 667–671. [53] Liu B, Kita H, Yogo K. Preparation of Si-rich LTA zeolite membrane using organic template-free solution for methanol dehydration[J]. Sep. Purif. Technol., 2020, 239: 116533. [54] Seshimo M, Liu B, Lee H R, et al. Membrane reactor for methanol synthesis using Si-rich LTA zeolite membrane[J]. Membranes, 2021, 11(7): 505. [55] Yue W, Li Y, Wei W, et al.Highly selective CO2 conversion to methanol in a bifunctional zeolite catalytic membrane reactor[J]. Angew. Chem. Int. Ed., 2021, 60(33): 18289–18294. [56] Tian C, Huang A. Synthesis of a Cu/Zn-BTC@LTA derivatived Cu–ZnO@LTA membrane reactor for CO2 hydrogenation[J]. J. Membr. Sci., 2022, 662: 121010. [57] 李 玲,绿色甲醇路线受追捧,中国能源报,2023.3.06,第10版 |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号