热退火对中空纤维气体分离膜结构及性能的影响
作者:牟庆迪,盛鲁杰,刘元法,任吉中
单位: 1. 大连工业大学 纺织与材料工程学院,大连 116034;2. 洁净能源国家实验室,中国科学院大连化学物理研究所,大连 116023
关键词: 气体分离;聚酰亚胺;中空纤维膜;热退火
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2024,44(4):1-7

摘要:
 在气体膜分离领域,中空纤维膜(Hollow Fiber Membranes, HFMs)因其较高的比表面积和装填率等被广泛应用。本文选用干-湿法纺丝工艺制备的BTDA-TDI/MDI(P84)共聚聚酰亚胺中空纤维膜为基膜,在P84 Tg(332.6℃)温度以下(250℃,300℃)对P84 HFMs进行热退火处理,研究其对中空纤维膜结构和气体分离性能的影响。与原始P84 HFMs相比,当热处理温度为250℃时,热退火后的P84 HFMs的气体分离性能变化不明显,但是拉伸强度和断裂伸长率明显下降。当热处理温度接近Tg时(300℃),热退火后P84 HFMs的拉伸强度和断裂伸长率保持不变,并且气体分离选择性明显提高,膜丝表面的缺陷减少。为了进一步了解在Tg以下的热退火过程对中空纤维膜结构及性能的影响,采用XRD、FTIR和HIM等表征方法进行探索。
  In the field of gas membrane separation, hollow fiber membranes (HFMs) are widely used due to their high specific surface area and high filling ratio. In this paper, BTDA-TDI/MDI (P84) co-polyimide hollow fiber membranes were prepared by dry-wet spinning technology. The P84 HFMs were thermally annealed at 250℃ and 300℃, which were below the temperature of P84 Tg (332.6℃), to investigate the effect of thermal annealing procedure on the structure and gas separation performance of the HFMs. Compared with the pristine P84 HFMs, the gas separation properties of the thermally annealed P84 HFMs at 250℃ had negligible change, but their tensile strength and the elongation at break decreased significantly. When the thermal annealing temperature was close to Tg (at 300°C), the thermal annealing P84 HFMs could maintain the tensile strength and elongation at break. In addition, their gas separation selectivity was significantly improved, and the defects on the surface of P84 HFMs were reduced. To further investigate the effect of the sub-Tg thermal annealing process on the structure of the P84 HFMs, they were characterized by XRD, FTIR, HIM, and so on.
 

基金项目:
国家重点研发计划(2020YFC0862903)

作者简介:
牟庆迪(1997-),男,黑龙江克山人,硕士生,主要从事气体分离方面的研究.

参考文献:
[1] Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600):435-437.
[2] Basu S, Khan A L, Cano-Odena A, et al. Membrane-based technologies for biogas separations[J]. Chem Soc Rev, 2010, 39(2):750-768.
[3] Feng S, Du X, Luo J, et al. A review on facilitated transport membranes based on π-complexation for carbon dioxide separation[J]. Sep Purif Technol, 2023, 309:122972.
[4] Sun C, Lyu Q, Si Y, et al. Superhydrophobic Carbon Nanotube Network Membranes for Membrane Distillation: High-Throughput Performance and Transport Mechanism[J]. Environmental Science & Technology, 2022, 56(9):5775-5785.
[5] Huang T, Song J, He H, et al. Impact of SPEEK on PEEK membranes: Demixing, morphology and performance enhancement in lithium membrane extraction[J]. J Membr Sci, 2020, 615:118448.
[6] Jeon Y-W, Lee D-H. Gas Membranes for CO2/CH4 (Biogas) Separation: A Review[J]. Environmental Engineering Science, 2015, 32(2):71-85.
[7] Ding X, Wang F, Lin G, et al. The enhancement of separation performance of hollow fiber membrane modules: From the perspective of membranes and membrane modules structural optimization design[J]. Chem Eng Sci, 2023, 280:119106.
[8] Strathmann H. Membrane separation processes: Current relevance and future opportunities[J]. AlChE J, 2001, 47(5):1077-1087.
[9] Zhuang Y, Seong J G, Lee Y M. Polyimides containing aliphatic/alicyclic segments in the main chains[J]. Prog Polym Sci, 2019, 92:35-88.
[10] Dong G, Li H, Chen V. Factors affect defect-free Matrimid® hollow fiber gas separation performance in natural gas purification[J]. J Membr Sci, 2010, 353(1):17-27.
[11] Sullivan D M, Bruening M L. Ultrathin, gas-selective polyimide membranes prepared from multilayer polyelectrolyte films[J]. Chem Mater, 2003, 15(1):281-287.
[12] Xu L, Zhang C, Rungta M, et al. Formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes for gas separations[J]. J Membr Sci, 2014, 459:223-232.
[13] Rafiq S, Man Z, Maulud A, et al. Effect of varying solvents compositions on morphology and gas permeation properties on membranes blends for CO2 separation from natural gas[J]. J Membr Sci, 2011, 378(1-2):444-452.
[14] Wang K Y, Weber M, Chung T-S. Polybenzimidazoles (PBIs) and state-of-the-art PBI hollow fiber membranes for water, organic solvent and gas separations: a review[J]. J Mater Chem A, 2022, 10(16):8687-8718.
[15] Chen B, Zhao G, Lau C H, et al. Fabrication of high-flux defect-free hollow fiber membranes derived from a phenolphthalein-based copolyimide for gas separation[J]. Sep Purif Technol, 2024, 331:125724.
[16] Yu H J, An H, Shin J H, et al. A new dip-coating approach for plasticization-resistant polyimide hollow fiber membranes: In situ thermal imidization and cross-linking of polyamic acid[J]. Chem Eng J, 2023, 473:145378.
[17] Yang M, Liu H, Chen K, et al. Green thermally induced phase separation (TIPS) process for braided tube reinforced polyvinylidene fluoride (PVDF) hollow fiber composite membranes with favorable bonding layer[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 147:104903.
[18] Juntadech N C, Juntadech T, Niamlang S, et al. Cellulose acetate/nanoclay composite membranes with enhanced mechanical properties and improved permeance in gas separation[J]. J Appl Polym Sci, 2023, 140(24):54032.
[19] Krol J J, Boerrigter M, Koops G H. Polyimide hollow fiber gas separation membranes: preparation and the suppression of plasticization in propane/propylene environments[J]. J Membr Sci, 2001, 184(2):275-286.
[20] Kawakami H, Mikawa M, Nagaoka S. Gas transport properties in thermally cured aromatic polyimide membranes[J]. J Membr Sci, 1996, 118(2):223-230.
[21] Chung T S, Ren J H, Wang R, et al. Development of asymmetric 6FDA-2,6DAT hollow fiber membranes forCO2/CH4 separation Part 2.: Suppression of plasticization[J]. J Membr Sci, 2003, 214(1):57-69.
[22] Xu R S, Li L, Jin X, et al. Thermal crosslinking of a novel membrane derived from phenolphthalein-based cardo poly(arylene ether ketone) to enhance CO2/CH4 separation performance and plasticization resistance[J]. J Membr Sci, 2019, 586:306-317.
[23] Bos A, Punt I G M, Wessling M, et al. Plasticization-resistant glassy polyimide membranes for CO2/CO4 separations[J]. Sep Purif Technol, 1998, 14(1-3):27-39.
[24] Duthie X, Kentish S, Pas S J, et al. Thermal treatment of dense polyimide membranes[J]. Journal of Polymer Science Part B-Polymer Physics, 2008, 46(18):1879-1890.
[25] Sheng L J, Ren J Z, Hua K S, et al. The enhancement of mechanical properties of P84 hollow fiber membranes by thermally annealing below and above Tg[J]. J Membr Sci, 2020, 595:117580.
[26] 李思琪, 赵丹, 李晖, 等. 聚酰亚胺膜在稀有气体分离中的性能研究[J]. 膜科学与技术, 2023, 43(4):90-98.
[27] Vaughn J T, Koros W J, Johnson J R, et al. Effect of thermal annealing on a novel polyamide–imide polymer membrane for aggressive acid gas separations[J]. J Membr Sci, 2012, 401-402:163-174.
[28] Hasegawa M, Kochi M, Mita I, et al. Molecular aggregation and fluorescence spectra of aromatic polyimides[J]. Eur Polym J, 1989, 25(4):349-354.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号