光催化CO2静电纺丝MOF膜的制备与性能
作者:林鹏飞,何欣平,吴东云,董晨曦,赵磊,伊春海,郭佳鑫
单位: 1 西安交通大学 化学工程与技术学院,西安 710049;2陕西延长石油(集团)有限责任公司研究院, 西安 710065;3盐城职业技术学院 纺织服装学院,盐城 224005
关键词: MOFs;ZIF-67;热稳定;静电纺丝;膜;光催化;CO2还原
DOI号:
分类号: X701
出版年,卷(期):页码: 2024,44(4):17-27

摘要:
 金属有机骨架(MOFs)因其在多相催化中的应用而受到广泛的关注,但是与反应混合物的分离效果差限制了其实际应用。MOFs薄膜在光催化分解污染物方面有着广泛的应用,但在光催化CO2领域很少有报道,所以制备适合光催化CO2高效还原的MOFs薄膜十分有必要。本研究通过静电纺丝将ZIF-67混纺在聚丙烯腈(PAN)纳米纤维膜(NFMs)内,再进行热稳定处理,得到SZIF-67/PAN NFMs,表征了形貌特征、化学成分、光催化性能以及光电性能等。结果表明,SZIF-67/PAN NFMs由于可见光响应的改善、光热转化能力和耐溶剂能力的提高,对CO2的还原表现出优异的可见光驱动光催化活性,CO生成速率达到12000μmol/(g.h),重复使用3次后光催化性能仍保持在85.4%。此外,还提出了CO2全面光还原的可能机理:光敏剂通过可见光激发产生电子注入SZIF-67/PAN NFMs中Co活性点位,吸附在Co活性点位上的电子进一步转移到CO2上并与质子形成CO。最后CO从NFMs上解吸,实现光催化CO2到CO的转化。
 
 Metal-organic frameworks (MOFs) have garnered considerable attention for their applications in heterogeneous catalysis. However, their practical utility is hindered by subpar separation efficiency from reaction mixtures. While MOF membranes find widespread application in photocatalytic decomposition of pollutants, their utilization in the photocatalytic CO2 reduction domain is notably underexplored. Consequently, the preparation of MOF membranes tailored for efficient photocatalytic CO2 reduction becomes imperative. In this study, ZIF-67 was blended into polyacrylonitrile (PAN) nanofiber membranes (NFMs) by electrospinning, and then heat stabilized to obtain SZIF-67/PAN NFMs. The morphology, chemical composition, photocatalytic properties and photoelectric properties were characterized. The results demonstrate that SZIF-67/PAN NFMs exhibit outstanding visible light-driven photocatalytic activity for CO2 reduction, attributed to improvements in visible light responsiveness, photothermal conversion capability, and solvent resistance. The CO generation rate reached 12000 μmol/(g.h), with photocatalytic performance maintaining at 85.4% after three repeated uses. In addition, the possible mechanism of total CO2 photoreduction is proposed: the photosensitizers generate electrons through visible light excitation into the Co active site in SZIF-67/PAN NFMs, and the electrons adsorbing at the Co active site are further transferred to CO2 and form CO with protons. Finally, CO is desorbed from NFMs to achieve the photocatalytic conversion of CO2 to CO.
 

基金项目:
陕西省自然科学基金(2023-JC-ZD-26)

作者简介:
林鹏飞(1992-),男,山东潍坊人,博士研究生,从事静电纺丝先进光催化纳米纤维膜的制备与应用,E-mail:linpengfei@stu.xjtu.edu.cn

参考文献:
 [1] Oh Y , Hu X .Organic molecules as mediators and catalysts for photocatalytic and electrocatalytic CO2 reduction[J]. Chem Soc Rev, 2013, 42(6):2253-2261.
[2] Li K , An X , Park K H ,et al.A critical review of CO2 photoconversion: Catalysts and reactors[J]. Catal Today, 2014, 224:3-12.
[3] Qiao J , Liu Y , Hong F ,et al.A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chem Soc Rev, 2014, 45(2):631-675.
[4] White J L , Baruch M F , Iii J E P ,et al.Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes[J]. Chem Rev, 2015,115(23):12888-12935. 
[5] Liu J , Wll C .Surface-supported metal–organic framework thin films: Fabrication methods, applications, and challenges[J]. Chem Soc Rev, 2017, 46(19):5730-5770.
[6] Ye L , Liu J , Gao Y ,et al.Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO2 to CO exhibiting high faradaic efficiency[J]. J Mater Chem A, 2016, 4(40):15320-15326.
[7] Li Y , Xu H , Ouyang S ,et al. Metal–organic frameworks for photocatalysis[J]. Phys Chem Chem Phys, 2016, 18: 7563–7572. 
[8] Fu Y , Sun D , Chen Y ,et al.An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction[J]. Angew Chem Int Ed, 2012, 124(14):3420-3423.
[9] Wang S ,Yao W , Lin J ,et al.Cobalt imidazolate metal–organic frameworks photosplit CO2 under mild reaction conditions[J]. Angew Chem Int Ed, 2014, 53(4):1034–1038.
[10] Banerjee R , Phan A , Wang B ,et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J].Science, 2008, 319(5865):939-943.
[11] Phan A , Doonan C J , Uribe-Romo F J ,et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks[J]. ACC Chem Res, 2010, 43(1):58-67.
[12] Sellaro M, Bellardita M, Brunetti A,et al. CO2 conversion in a photocatalytic continuous membrane reactor[J].RSC Adv, 2016, 6:67418–67427.
[13] Ge J , Zong D , Jin Q ,et al.Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions[J]. Adv Funct Mater, 2018, 28(10):1705051.1-1705051.10.
[14] Armstrong M , Sirous P , Shan B ,et al.Prolonged HKUST-1 functionality under extreme hydrothermal conditions by electrospinning polystyrene fibers as a new coating method[J]. Microporous Mesoporous 
Mater, 2018,270:34-39. 
[15] Mccarthy D L , Liu J , Dwyer D B ,et al. Electrospun metal–organic framework polymer composites for the catalytic degradation of methyl paraoxon[J]. New J Chem, 2017, 41(17):8748-8753. 
[16] Yang F , Efome J E , Rana D ,et al. Metal-organic frameworks supported on nanofiber for desalination by direct contact membrane distillation[J]. ACS Appl Mater Interfaces, 2018, 10(13):11251-11260. 
[17] Ren J , Musyoka N M , Annamalai P ,et al.Electrospun MOF nanofibers as hydrogen storage media[J]. Int J Hydrogen Energy, 2015, 40(30):9382-9387.
[18] Jing M , Wang C G , Zhu B ,et al.Effects of preoxidation and carbonization technologies on tensile strength of PAN-based carbon fiber[J].J Appl Polym Sci, 2008, 108(2):1259-1264.
[19] Morita K , Murata Y , Ishitani A ,et al.Characterization of commercially available PAN (polyacrylonitri1e)-based carbon fibers[J]. Pure Appl Chem, 1986, 58(3):455–468.
[20] Fu Z , Liu B , Sun L ,et al.Study on the thermal oxidative stabilization reactions and the formed structures in polyacrylonitrile during thermal treatment[J].Polym Degrad Stab, 2017, 140:104-113.
[21] Xue Y , Liu J , Liang J .Correlative study of critical reactions in polyacrylonitrile based carbon fiber precursors during thermal-oxidative stabilization[J].Polym Degrad Stab, 2013, 98(1):219-229.
[22] Neghlani P K , Rafizadeh M , Taromi F A .Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: Comparison with microfibers[J]. J Hazard Mater, 2011, 186(1):182.
[23] Kwon H T , Jeong H K , Lee A S ,et al.Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances[J].JACS, 2015, 137(38):12304-12311.
[24] Yang H , He X ,Wang F ,et al.Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye[J]. J Mater Chem, 2012, 22(41):21849-21851.
[25] Wang M , Liu J , Guo C ,et al. Metal-organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO2: The role of the morphology effect[J]. Mater Chem A,2018, 6(11):4768-4775.
[26] Wei W , Chen W , Ivey G, Rock salt-spinel structural transformation in anodically electrodeposited Mn-Co-O nanocrystals[J], Chem Mat,2008, 20(5):1941-1947. 
[27] Barreca D , Massignan C , Daolio S ,et al.Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt(ii) precursor by chemical vapor deposition[J]. Chem Mater, 2001, 13(2):588-593.
[28] Castner D G , Watson P R , Chan I Y .X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and analytical electron microscopy studies of cobalt catalysts. 2. Hydrogen reduction properties[J].J Phys Chem, 1990, 94(2):819-828.
[29] Meng X , Chen X , Sun W ,et al.Highly efficient photocatalytic CO2 reduction with an organic dye as photosensitizer[J]. Inorg Chem Commun, 2021, 129:108617.
[30] Lehn J M , Ziessel R .Photochemical reduction of carbon dioxide to formate catalyzed by 2,2t?-bipyridine- or 1,10-phenanthroline-ruthenium(II) complexes[J]. J Organomet Chem, 1990, 382(1):157-173.
[31] Wang S, Ding Z, Wang X. A stable ZnCo2O4 cocatalyst for photocatalytic CO2 reduction[J]. Chem Commun,2015, 51(8) :1517-1519. 
[32] Yusof N , Ismail A .Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review[J]. Anal Appl Pyrolysis,2012, 93:1–13.
[33] Wang X , Liu J , Zhang L ,et al. Monometallic catalytic models hosted in stable metal-organic frameworks for tunable CO2 photoreduction[J]. ACS Catal, 2019, 9:1726−1732.
[34] Zheng M , Ding Y , Yu L ,et al.In situ grown pristine cobalt sulfide as bifunctional photocatalyst for hydrogen and oxygen evolution[J]. Adv Funct Mater, 2017, 27(11):1605846.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号