高质子传导率的GSPEEK凝胶膜制备及其PEMWE性能
作者:刘绪锟,王丽华,仇智,韩旭彤
单位: 1天津工业大学 材料科学与工程学院,天津300387; 2 中国科学院化学研究所,极端环境高分子院重点实验室,北京100190
关键词: GSPEEK凝胶膜;质子交换膜;电解水制氢;质子电导率
DOI号:
分类号: TQ028;TB383
出版年,卷(期):页码: 2024,44(4):28-35

摘要:
磺化聚醚醚酮(SPEEK)质子交换膜一般是将聚醚醚酮(PEEK)先磺化然后再进行溶解流延的方式来制备,存在制备过程复杂和电导率较低等问题。本研究创新性的将磺化与成膜过程集成,一步实现从PEEK到磺化度可控的凝胶质子膜(GSPEEK)的高效制备。GSPEEK膜具有的独特“鱼鳞”状微观形貌,极大提升其质子电导率,在GSPEEK固含量为10%(质量分数)、成膜温度40℃时电导率可达167.0mS/cm,其质子传导率分别是普通SPEEK膜的3.05倍和商业Nafion 117膜的2.45倍。组装成质子交换膜电解水制氢膜电极(MEA)进行测试,结果表明,当电压为2.4 V时,GSPEKK-10膜的电流密度为1000mA/cm2,相较于普通SPEEK膜和Nafion-117膜的600mA/cm2、400mA/cm2,其电解水性能得到了大幅度的提升,具有潜在的产业化前景。
 
?Sulfonated polyether ether ketone (SPEEK) proton exchange membranes are generally prepared by first sulfonating polyether ether ketone (PEEK) and then dissolving and casting it, which has problems such as complex preparation process and low conductivity. This research innovatively integrates sulfonation and membrane forming process to achieve efficient preparation of gel proton membrane (GSPEEK) with controllable sulfonation degree in one step. The unique "fish scale" like microstructure of GSPEEK membrane greatly enhances its proton conductivity. At a solid content of 10% and a film-forming temperature of 40 ℃, the conductivity can reach 167.0mS/cm. Its proton conductivity is 4.05 times that of normal SPEEK membrane and 2.45 times that of Nafion 117 commercial membrane, respectively. Assembled into proton exchange membrane electrolysis hydrogen production membrane electrode (MEA) for testing, the results showed that when the voltage was 2.4 V, the current density of GSPEKK-10 membrane was 1000 mA/cm2. Compared with the 600 mA/cm2 and 400 mA/cm2 of normal SPEEK membrane and Nafion-117 membrane, its water electrolysis performance was significantly improved, which has potential industrialization prospects.
 

基金项目:

作者简介:
刘绪锟(1998-),男,山东省济宁市人,硕士,主要从事质子交换膜方向研究

参考文献:
 [1]孟娇娇,胡平,崔杰.基于PLC的PEM电解水制氢系统设计[J].河南科技,2023,42(1):7-11.
[2]裴冯来,高怡晨,郭则新.氢燃料电池汽车产业链发展研究[J].质量与标准化,2018(1):51-54.
[3]Ahmad H, Kamarudin SK, Hasran UA,et al.Overview of hybrid membranes for direct-methanol fuel-cell applications[J].Int. J Hydrogen Energy, 2010, 35(5):2160-2175.
[4]Lufrano F, Baglio V, Staiti P ,et al.Performance analysis of polymer electrolyte membranes for direct methanol fuel cells[J]. J Power Sources, 2013, 243(1):519-534.
[5]Shin DW, Guiver MD, Lee YM. Hydrocarbon-based polymer electrolyte membranes: Importance of morphology on ion transport and membrane stability[J]. Chem Rev,2017,117 (6) :4759–4805. 
[6]Wei P, Sui Y, Meng X, et al.The advances development of proton exchange membrane with high proton conductivity and balanced stability in fuel cells[J]. J Appl Polym Sci,2023,140(21/22):53919. 
[7]Ran J, Wu L, He Y,et al. Ion exchange membranes: New developments and applications[J]. J Membr Sci, 2017,522 :267–291.
[8]Wu L, Zhang Z , Ran J, et al.Advances in proton-exchange membranes for fuel cells: an overview on proton conductive channels (PCCs)[J]. Phys Chem Chem. Phys. 2013,15 (14) :4870–4887. 
[9]Kusoglu A, Weber AZ, New insights into perfluorinated sulfonic-acid ionomers[J]. Chem Rev, 2017,117 (3) :987–1104.
[10]张重阳.聚芳醚酮基填充型复合质子交换膜的制备与性能研究[D].吉林:吉林大学,2022.
[11]Zhang Y,Li J,Ma L,et al.Recent Developments on Alternative Proton Exchange Membranes: Strategies for Systematic Performance Improvement[J].Energy Technol-ger, 2015, 3(7):675-691.
[12]Pourzare K , Mansourpanah Y , Farhadi S , et al.Improving the efficiency of Nafion-based proton exchange membranes embedded with magnetically aligned silica-coated Co3O4 nanoparticles[J]. Solid State Ionics,2020,351:115-343.
[13]Tylkowski B , Walkowiak-Kulikowska J , Wolska J ,et al..Polymers application in proton exchange membranes for fuel cells (PEMFCs)[J]. Phys Sci. Rev, 2017,2(8):18.
[14]Kreuer KD. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells[J]. J Membrane Sci,2001,185(1): 29-39.
[15]Shuitao G , Hulin X , Zhou F ,et al.Highly sulfonated poly(ether ether ketone) grafted on graphene oxide as nanohybrid proton exchange membrane applied in fuel cells[J].Electrochimica Acta, 2018, 283:428-437.
[16]Khan MI,Shanableh A,Shahida S,et al.SPEEK and SPPO Blended Membranes for Proton Exchange Membrane Fuel Cells.[J]. Membranes,2022,12(3),263.
[17]Fayemi O E,Pooe O G,Adesanya F A ,et al. Spectroscopy and Cyclic Voltammetry Properties of SPEEK/CuO Nanocomposite at Screen-Printed Gold Electrodes[J]. Nanomaterials,2022,12(11):1825.
[18]Gong C, Liu H, Zhang B, et al.High level of solid superacid coated poly(vinylidene fluoride) electrospun nanofiber composite polymer electrolyte membranes[J].J Membr Sci. 2017,535 :113–121.
[19]Zhang Z, Ren J, Xu J, et al. Enhanced proton conductivity of sulfonated poly(arylene ether ketone sulfone) polymers by incorporating phosphotungstic acid-ionic-liquid-functionalized metal-organic framework[J].J Membr Sci. 2021,630:119304 .
[20]Barbir F.PEM electrolysis for production of hydrogen from renewable energy sources[J].Solar Energy,2005,78(5):661?669.
[21]张琪,陆婕妤,钟璟,等.ABPBI/SPEEK高温质子交换复合膜的制备与表征[J].现代化工,2024,44(2):91-96.
[22]陈葛锋,王丽华,韩旭彤.SPEEK/PEI@ILs复合质子交换膜的制备及PEMWE性能[J].膜科学与技术,2023,43(6):29-43.
[23]郭宇星,沈春晖,高山俊,等.侧链磺化聚醚醚酮质子交换膜的制备及性能[J].膜科学与技术,2020,40(4):34-40.
[24]刘军,梁艳,凌云志.水电解制氢改造技术工艺研究[J].中国石油和化工标准与质量,2019,39(23):194-195.
[25]张泽文.中压水电解制氢工艺指标异常治理与探讨[J].中国科技纵横, 2017,25(9):224.
[26]赵飞.水电解制氢工艺技术分析[J].化肥设计,2023,61(6):32-36.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号