MIL-101-OH纳米流体混基质膜的制备及其CO2分离性能 |
作者:王乐乐,赵丹,陈淑慧,刘慧强,孙健,徐徜徉,任吉中 |
单位: 1.洁净能源国家实验室,中国科学院 大连化学物理研究所,大连 116023;2.中国科学院大学,北京 100049;3.膜技术国家工程研究中心,大连 116023 |
关键词: 纳米流体;MIL-101-OH;混合基质膜;CO2分离 |
DOI号: |
分类号: TQ051.893 |
出版年,卷(期):页码: 2024,44(4):36-47 |
摘要: |
随着温室效应导致的全球变暖和海平面上升等环境问题日益严峻,碳捕集利用与封存(CCUS)就显得尤为重要。金属有机框架(MOF)混合基质膜(MMMs)因具有分离效果好、渗透性高的特点而广受关注,但仍存在和聚合物基质相容性差等问题,降低了其潜在的应用价值。本研究采用共价键连接的方式,以MIL-101-OH为主体,以偶联剂KH560为连接层,以聚醚胺M2070为冠状层制备出了MIL-101-OH无溶剂纳米流体(MIL-101-OH-M2070),并与Pebax1657制备混合基质膜,研究其CO2分离性能。结果表明,MIL-101-OH和聚醚胺M2070间共价键的连接方式既解决了MOF界面相容性差的问题,同时也提高了聚醚胺机械性能、热稳定性。此外,MIL-101-OH-M2070凭借MIL-101-OH的优良孔隙率和M2070的CO2亲和性,大幅提高了混合基质膜中CO2的扩散系数和溶解系数。相较于Pebax1657纯膜,MIL-101-OH-M2070 MMMs的CO2渗透系数可以达到Pebax1657纯膜的215%,且选择性基本不变。 |
Carbon Capture Utilization and Storage (CCUS) is crucial in addressing environmental issues such as global warming and sea level rise caused by the greenhouse effect. Metal-organic framework (MOF) mixed matrix membranes (MMMs) have gained significant attention due to their excellent separation efficiency and high permeability. However, there are problems with the compatibility of fillers and polymer matrices, which can lead to the formation of interfacial defects. This reduces their potential value for applications. The study involved the preparation of MIL-101-OH solvent-free nanofluid (MIL-101-OH-M2070) through covalent bonding. MIL-101-OH was used as the main body, coupling agent KH560 as the connecting layer, and poly(ether amine) M2070 as the coronal layer. Mixed matrix membranes were then prepared with Pebax1657 to investigate their CO2 separation performance. To address the issues of poor interfacial compatibility of MOF and weak mechanical and thermal stability of poly(ether amine), MIL-101-OH and poly(ether amine) M2070 were covalently bonded. MIL-101-OH nanofluidic hybrid matrix membranes (MIL-101-OH MMMs) were compared with MIL-101-OH-M2070-MMMs to solve the problem of poor interfacial compatibility. Furthermore, the hybrid matrix membrane containing MIL-101-OH-M2070 demonstrated a significant enhancement in both the diffusion and solubility coefficients of CO2. This improvement can be attributed to the exceptional porosity of MIL-101-OH and the CO2 affinity of M2070. When compared to the pure Pebax1657 membrane, the CO2 permeation coefficient of MIL-101-OH-M2070 MMMs was found to be 215% higher while maintaining the same selectivity. |
基金项目: |
国家自然科学基金项目(201908215);大连市支持高层次人才创新创业项目(2019RQ062); |
作者简介: |
王乐乐(1998-),男,安徽灵璧人,硕士研究生,主要从事膜分离研究,E-mail:wanglele@dicp.ac.cn |
参考文献: |
[1] Lehmann J, Possinger A. Removal of atmospheric CO2 by rock weathering holds promise for mitigating climate change [Z]. Nature Publishing Group UK London. 2020: 1-10 [2] Tapia J F D, Lee J Y, Ooi R E, et al. A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems [J]. Sustainable Production and Consumption, 2018, 13: 1-15. [3] 周忠清, 方富禄. 二氧化碳分离回收工艺技术 [J]. 金山油化纤, 1991, 10(2): 14-18. [4] Nugent P, Belmabkhout Y, Burd S D, et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation [J]. Nature, 2013, 495(7439): 80-84. [5] Park J, Yoon S, Oh S Y, et al. Improving energy efficiency for a low-temperature CO2 separation process in natural gas processing [J]. Energy, 2021, 214: 118844. [6] Pullumbi P, Brandani F, Brandani S. Gas separation by adsorption: technological drivers and opportunities for improvement [J]. Current Opinion in Chemical Engineering, 2019, 24: 131-142. [7] Han Y, Ho W W. Polymeric membranes for CO2 separation and capture [J]. J MembrSci, 2021, 628: 119244. [8] Dai Y, Niu Z, Luo W, et al. A review on the recent advances in composite membranes for CO2 capture processes [J]. Sep Purif Technol, 2023, 307: 122752. [9] Li H, Haas-Santo K, Schygulla U, et al. Inorganic microporous membranes for H2 and CO2 separation—Review of experimental and modeling progress [J]. Chemical Engineering Science, 2015, 127: 401-417. [10] Norahim N, Yaisanga P, Faungnawakij K, et al. Recent membrane developments for CO2 separation and capture [J]. Chemical Engineering & Technology, 2018, 41(2): 211-223. [11] Zhang F, Zou X, Gao X, et al. Hydrogen selective NH2‐MIL‐53 (Al) MOF membranes with high permeability [J]. Advanced Functional Materials, 2012, 22(17): 3583-3590. [12] Vinoba M, Bhagiyalakshmi M, Alqaheem Y, et al. Recent progress of fillers in mixed matrix membranes for CO2 separation: A review [J]. Sep Purif Technol, 2017, 188: 431-450. [13] 赵丹, 李晖, 邱永涛, 等. 聚醚嵌段酰胺/多壁碳纳米管混合基质膜的制备及性能 [J]. 高分子材料科学与工程, 2015, 31(12): 115-119. [14] Zornoza B, Tellez C, Coronas J, et al. Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential [J]. Microporous and Mesoporous Materials, 2013, 166: 67-78. [15] Rezakazemi M, Amooghin A E, Montazer-Rahmati M M, et al. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions [J]. Progress in Polymer Science, 2014, 39(5): 817-861. [16] Naseri M, Mousavi S F, Mohammadi T, et al. Synthesis and gas transport performance of MIL-101/Matrimid mixed matrix membranes [J]. Journal of Industrial and Engineering Chemistry, 2015, 29: 249-256. [17] 陈淑慧, 赵丹, 高继发, 等. EM400/改性MIL-101(Cr)混合基质膜的制备及其CO2分离性能 [J]. 膜科学与技术, 2023, 43(1): 65-73. [18] Xin Q, Liu T, Li Z, et al. Mixed matrix membranes composed of sulfonated poly (ether ether ketone) and a sulfonated metal–organic framework for gas separation [J]. J Membr Sci, 2015, 488: 67-78. [19] Chen S, Zhao D, Feng Y, et al. The preparation and characterization of gel-mixed matrix membranes (g-MMMs) with high CO2 permeability and stability performance [J]. J Membr Sci, 2022, 652: 120471. [20] Li X, Yao D, Wang D, et al. Amino-functionalized ZIFs-based porous liquids with low viscosity for efficient low-pressure CO2 capture and CO2/N2 separation [J]. Chemical Engineering Journal, 2022, 429: 132296. [21] 闫海龙, 高缨佳, 胡爱军, 等. 分离CO2的纳米材料/ Pebax混合基质膜研究进展 [J]. 膜科学与技术, 2021, 41(05): 174-182. [22] Lv X, Li X, Huang L, et al. Tailoring physical and chemical microenvironments by polyether-amine in blended membranes for efficient CO2 separation [J]. Korean Journal of Chemical Engineering, 2022, 39(3): 475-483. [23] Lee S-J, Yoon J W, Seo Y-K, et al. Effect of purification conditions on gas storage and separations in a chromium-based metal–organic framework MIL-101 [J]. Microporous and Mesoporous Materials, 2014, 193: 160-165. [24] Paul D, Kemp D. The diffusion time lag in polymer membranes containing adsorptive fillers; proceedings of the Journal of polymer science: polymer symposia, F, 1973 [C]. Wiley Online Library, 1973, 41(1): 79-93. [25] Mahdavi H, Ahmadian‐Alam L, Molavi H. Grafting of sulfonated monomer onto an amino‐silane functionalized 2‐aminoterephthalate metal− organic framework via surface‐initiated redox polymerization: proton‐conducting solid electrolytes [J]. Polymer International, 2015, 64(11): 1578-1584. [26] Kim J H, Ha S Y, Lee Y M. Gas permeation of poly (amide-6-b-ethylene oxide) copolymer [J]. J Membr Sci, 2001, 190(2): 179-193. [27] Wang D, Xin Y, Li X, et al. A universal approach to turn UiO-66 into type 1 porous liquids via post-synthetic modification with corona-canopy species for CO2 capture [J]. Chemical Engineering Journal, 2021, 416: 127625. [28] Semsarzadeh M A, Sadeghi M, Barikani M. Effect of chain extender length on gas permeation properties of polyurethane membranes [J]. Iran Polym J, 2008, 17 (6): 431-440. [29] Song C, Li R, Fan Z, et al. CO2/N2 separation performance of Pebax/MIL-101 and Pebax/NH2-MIL-101 mixed matrix membranes and intensification via sub-ambient operation [J]. Sep Purif Technol, 2020, 238: 116500. [30] 韩悦, 吴婷婷, 王岩, 等. MIL-101(Cr)/共聚酰亚胺混合基质CO2/CH4分离膜的性能表征 [J]. 南京工业大学学报(自然科学版), 2021, 43(1): 32-39. [31] 杨凯, 阮雪华, 代岩, 等. 氨基MIL-101(Cr)强化CO2分离性能的混合基质膜优化制备 [J]. 化工学报, 2020, 71(1): 329-336. [32] Afarani H T, Sadeghi M, Moheb A. The Gas Separation Performance of Polyurethane–Zeolite Mixed Matrix Membranes [J]. Advances in Polymer Technology, 2018, 37(2): 339-348. [33] Yang K, Dai Y, Zheng W J, et al. ZIFs-modified GO plates for enhanced CO2 separation performance of ethyl cellulose based mixed matrix membranesf [J]. Sep Purif Technol, 2019, 214: 87-94. [34] Jia M M, Feng Y, Qiu J H, et al. Amine-functionalized MOFs@GO as filler in mixed matrix membrane for selective CO2 separation [J]. Sep Purif Technol, 2019, 213: 63-69. [35] Smith Z P, Bachman J E, Li T, et al. Increasing M2(dobdc) Loading in Selective Mixed-Matrix Membranes: A Rubber Toughening Approach [J]. Chem Mat, 2018, 30(5): 1484-1495. [36] Bae T H, Long J R. CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals [J]. Energy Environ Sci, 2013, 6(12): 3565-3569. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号