聚酰胺纳滤膜表面羧基密度调控及其抗污染性能
作者:李燕,赵有璟,李志录,王敏
单位: 1中国科学院 青海盐湖研究所,盐湖资源绿色高值利用重点实验室,西宁810008; 2青海省盐湖资源化学重点实验室, 西宁 810008
关键词: 纳滤膜;羧基;膜污染;盐湖卤水
DOI号:
分类号: TQ028
出版年,卷(期):页码: 2024,44(4):48-57

摘要:
 采用均苯三甲酰氯(TMC)、对苯二甲酰氯(IPC)与哌嗪进行界面聚合反应,制备了不同羧基密度的聚酰胺纳滤膜。研究了羧基密度对膜污染的影响,并对纳滤膜的镁锂分离选择效果进行评估。结果表明,TMC纳滤膜的羧基密度是IPC纳滤膜的3倍,水通量分别为81.9 L m-2 h-1 MPa-1和56.5 L m-2 h-1 MPa-1。TMC纳滤膜对硫酸镁、氯化钠的截留效果优于IPC纳滤膜,对卤水镁的截留率达82.66%,对锂的截留率为-27.82%,具有较好的镁-锂分离选择效果。膜污染结果显示,TMC纳滤膜的不可逆通量衰减指数是IPC纳滤膜的3倍,抗污染能力与膜面羧基密度成反比。结果证实了膜面羧基官能团在膜污染中的关键作用,为制备具备抗污染性和高镁锂分离比的纳滤膜提供了新思路。
 This study employed trimesoyl chloride, isophthaloyl chloride, and piperazine to conduct interfacial polymerization, resulting in polyamide nanofiltration membranes with varying carboxyl group densities. The impact of carboxyl group density on membrane fouling and separation performance of magnesium and lithium were thoroughly investigated. The results revealed that the carboxyl group density in trimesoyl chloride-based membrane (TMC) was three times higher than that in isophthaloyl chloride-based membrane (IPC). Furthermore, the flux of TMC, IPC membranes were 81.9 L m-2 h-1 MPa-1 and 56.5 L m-2 h-1 MPa-1, respectively. Notably, the TMC membrane exhibited superior retention for magnesium sulfate and sodium chloride compared to the IPC membrane, achieving a retention rate of 82.66% for magnesium in brine and -27.82% for lithium. Moreover, the membrane fouling indicated that the irreversible flux reduction rates of the TMC membrane was three times higher than that of the IPC membrane, suggesting an inverse correlation between anti-fouling capability and carboxyl group density on membrane surfaces. These results validate the pivotal role of surface carboxyl functional groups in membrane fouling, providing critical insights for the development of anti-fouling and highly selective nanofiltration membranes.

基金项目:
国家自然科学基金项目(U20A20138); 青海省自然科学基金项目 (2023-ZJ-948Q)

作者简介:
李燕,(1992- ),女,山东泰安人,博士研究生,主要研究方向为膜分离技术、分离膜材料。E-mail: liyan615@isl.ac.cn 。

参考文献:
 [1] 刘晓阳,陈玉波,白莹,等.废水处理中纳滤膜化学清洗技术研究现状、挑战与展望[J].水处理技术,2024,01(4): 1-7.
[2] 马军,李鹏飞,刘红斌.海水纳滤膜组件排列模式探讨[J].水处理技术,2021,47(7):80-83+88.
[3] 杜星,王金鹏,赵文涛,等.电氧化耦合纳滤工艺处理微污染苦咸水研究[J].水处理技术,2022,48(4):137-142.
[4] Ahmad N N R, Ang W L, Teow Y H, et al. Nanofiltration membrane processes for water recycling, reuse and product recovery within various industries: A review[J]. J Water Process Eng, 2022, 45:102478.
[5] Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356: 226-254.
[6] Paul M, Jons S D. Chemistry and fabrication of polymeric nanofiltration membranes: A review[J]. Polymer, 2016, 103: 417-456.
[7] Liu Z, Cao J, Li C, et al. A review on cleaning of nanofiltration and reverse osmosis membranes used for water treatment[J]. Desalin Water Treat, 2017, 87: 27-67.
[8] 王金燕,王曼曼,李鸽,等.盐湖提锂用退役纳滤膜的污染分析[J].膜科学与技术,2023,43(5):83-88.
[9] 苗闪闪,史乐,宋姿萍,等.可用于镁锂分离的双荷电纳滤膜研制[J].膜科学与技术,2023,43(4):37-43.
[10] 赵国珂,潘国元,张杨,等.镁锂分离纳滤膜的研究进展[J].膜科学与技术,2023,43(1):154-164.
[11] Lu Y, Zhou R, Wang N, et al. Engineer Nanoscale Defects into Selective Channels: MOF-Enhanced Li+ Separation by Porous Layered Double Hydroxide Membrane[J]. Nanomicro Lett, 2023, 15(1): 147.
[12] 郭世伟,郑力玮,罗建泉,等.纳滤膜在高盐废水处理中的应用研究进展[J].膜科学与技术,2022,42(2):175-182.
[13] 王新乐,刘铭辉,于海军,等.两性离子纳滤膜的制备及抗污染性能研究[J].膜科学与技术,2021,41(6):51-59.
[14] 刘兴,邓慧宇,段龙繁,等.抗污染高分子纳滤膜研究进展[J].膜科学与技术,2018,38(5):113-121.
[15] Xu H, Xiao K, Wang X, et al. Outlining the Roles of Membrane-Foulant and Foulant-Foulant Interactions in Organic Fouling During Microfiltration and Ultrafiltration: A Mini-Review[J]. Front Chem, 2020, 8:, 417.
[16] Teng J, Deng Y, Zhou X, et al. A critical review on thermodynamic mechanisms of membrane fouling in membrane-based water treatment process[J]. Front Environ Sci Eng, 2023, 17(10):129.
[17] Tan Z, Chen S, Peng X, et al. Polyamide membranes with nanoscale Turing structures for water purification[J]. Science, 2018,360(6388):518-521.
[18] Singh P S, Ray P, Xie Z, et al. Synchrotron SAXS to probe cross-linked network of polyamide ‘reverse osmosis’ and ‘nanofiltration’ membranes[J]. J Membr Sci, 2012, 421-422: 51-59.
[19] Liu C, Liu Y, Guo Y, et al. High-hydrophilic and salt rejecting PA-g/co-PVP RO membrane via bionic sand-fixing grass for pharmaceutical wastewater treatment[J]. Chem Eng J, 2019, 357: 269-279.
[20] Liu L, Liu Y, Chen X, et al. A nanofiltration membrane with outstanding antifouling ability: Exploring the structure-property-performance relationship[J]. J Membr Sci, 2023, 668: 121205.
[21] Li Y, Wang M, Xiang X, et al. Separation performance and fouling analyses of nanofiltration membrane for lithium extraction from salt lake brine[J]. J Water Process Eng, 2023, 54: 104009.
[22] Landsman M R, Rongpipi S, Freychet G, et al. Linking water quality, fouling layer composition, and performance of reverse osmosis membranes[J]. J Membr Sci, 2023, 680: 121717.
[23] Liu W, Zhao C, Zhou S, et al. Effects of UV/Fe(II)/sulfite pre-treatment on NOM-enhanced Ca2+ scaling during nanofiltration treatment: Fouling mitigation, mechanisms, and correlation analysis of membrane resistance[J]. Water Res, 2022, 223: 119025.
[24] Tiraferri A, Elimelech M. Direct quantification of negatively charged functional groups on membrane surfaces[J]. J Membr Sci, 2012, 389: 499-508.
[25] 莫颖慧.污水纳滤深度处理的膜污染及其对微量有机物截留的影响[D].北京: 清华大学, 2013.
[26] Mansourpanah Y, Madaeni S S, Rahimpour A. Rahimpour. Fabrication and development of interfacial polymerized thin-film composite nanofiltration membrane using different surfactants in organic phase; study of morphology and performance[J]. J Membr Sci, 2009, 343(1/2): 219-228.
[27] 张宇峰,刘恩华,吴云,等.聚酰胺纳滤中空纤维复合膜的制备及其性能研究[J].天津工业大学学报,2004, 23(1):8-10+14.
[28] Viatcheslav F. Kinetics of film formation by interfacial polycondensation[J]. Langmuir, 2005, 21(5): 1884-1894.
[29] Kunpeng W, Xiaomao W, Brielle J, et al. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships[J]. Chem Soc Rev, 2021, 51(2): 672-719.
[30] Yuan B, Li P, Wang P, et al. Novel aliphatic polyamide membrane with high mono-/divalent ion selectivity, excellent Ca2+, Mg2+ rejection, and improved antifouling properties[J]. Sep Purif, 2019, 224: 443-455.
[31] Retersen R. Composite Reserve-Osmosis and Nanofiltration Membrane[J]. J Membr Sci, 1993, 83(1): 81-150.
[32] Wang Z, Wang Z, Lin S, et al. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination[J]. Nat Commun,2018,9(1):1-9.
[33] Jiang C, Tian L, Zhai Z, et al. Thin-film composite membranes with aqueous template-induced surface nanostructures for enhanced nanofiltration[J]. J Membr Sci, 2019, 589:117244.
[34] Wilbert M C, Pellegrino J, Zydney A. Bench-scale testing of surfactant-modified reverse osmosis/nanofiltration membranes[J]. Desalination, 1998, 115(1): 15-32.
[35] Li Y, Zhao Y, Wang H, et al. The application of nanofiltration membrane for recovering lithium from salt lake brine[J]. Desalination, 2019, 468.
[36] Yaroshchuk A E. Dielectric exclusion of ions from membranes[J]. Adv Colloid Interface Sci, 2000, 85(2): 193-230.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号