贻贝仿生矿化超亲水表面膜的制备及其油水分离性能
作者:李思诺,刘 静,孙 凯,李胜海
单位: 1辽宁工程技术大学 机械工程学院,阜新 123000;2辽宁工程技术大学 创新实践学院,阜新 123000;3中国科学院生态环境高分子材料重点实验室,中国科学院长春应用化学研究所,长春 130022
关键词: 仿生矿化;超亲水;自清洁;油水分离
DOI号:
分类号: TQ028.8, TQ31
出版年,卷(期):页码: 2024,44(4):65-74

摘要:
 频繁的海洋原油泄漏、无序且随意的工业含油污水排放催生出高效油水分离材料迫切需求。融合膜分离技术和表面工程策略构建的超亲水膜实现了高效的油水分离而引发广泛关注。本文利用贻贝仿生矿化的策略,结合贻贝启发快速沉积和层层自组装矿化两步法,在各种膜表面成功制备了界面稳定且具有优异抗污染性能的超亲水/水下超疏油涂层。由于其突出的超亲水和水下驱油能力,涂层膜能够高效分离油水混合物以及表面活性剂稳定的水包油乳液。此外,由于优异的界面稳定性,超亲水表面膜实现了长效的油水乳液分离。这些优异的性能加上其简便的制造工艺,使其成为油/水分离的理想材料。
Frequent marine crude oil spills and disorderly discharge of industrial oily wastewater have given rise to an urgent demand for efficient oil/water separation materials. Superhydrophilic membranes constructed by integrating membrane separation technology and surface engineering strategies have attracted great attention for achieving efficient oil/water separation. Herein, a mussel inspired mineralization strategy combined with mussel-inspired rapid deposition and layer-by-layer self-assembled mineralization is used to successfully prepare interface-stable superhydrophilic/underwater superoleophobic coatings with excellent self-cleaning properties on various membrane surfaces. Thanks to its outstanding superhydrophilicity and underwater oil repellency, the coated membrane is capable of efficiently separating oil/water mixtures as well as surfactant-stabilized oil-in-water emulsions. In addition, due to the excellent interfacial stability, the superhydrophilic membrane achieves long-term oil-in-water emulsion separation, with the separation efficiency of the coated membrane remaining above 99.2% during 30 times of emulsion separation. These superior properties combined with its facile fabrication process make it an ideal material for oil/water separation. 

基金项目:
国家自然科学基金(U22B6012)。

作者简介:
李思诺(2003-),女,辽宁葫芦岛人,研究方向为膜法水处理

参考文献:
[1] 王祖纲, 董  华. 美国墨西哥湾溢油事故应急响应, 治理措施及其启示[J]. 国际石油经济, 2010, 18(6):1-4.
[2] Gong J, Xiang B, Sun Y, et al. Janus smart materials with asymmetrical wettability for on-demand oil/water separation: a comprehensive review[J]. J Mater Chem A, 2023, 11:25093-25114.
[3] 王  津. 海湾溢油事故损失计量研究[D]. 北京:北京化工大学, 2012.
[4] Wang Z C, Guan M, Yang X, et al. Molecular and nanostructure designed superhydrophilic material with unprecedented antioil-fouling property for diverse oil/water separation[J]. Sci China Tech Sci, 2022, 65(6):1273-1282.
[5] Yang J, Yu T, Wang Z, et al. Substrate-independent multifunctional nanostructured coating for diverse wastewater treatment[J]. J Membr Sci, 2022, 654:120562.
[6] 梁  娜, 张耀中, 王  涛, 等. 特殊浸润性膜的油水分离研究进展[J]. 水处理技术, 2022, 48(01):13-17. 
[7] Xiang B, Gong J, Sun Y, et al. High permeability PEG/MXene@MOF membrane with stable interlayer spacing and efficient fouling resistance for continuous oily wastewater purification[J]. J Membr Sci, 2024, 691:122247.
[8] Cui J, Zhou Z, Xie A, et al. Bio-inspired fabrication of superhydrophilic nanocomposite membrane based on surface modification of SiO2 anchored by polydopamine towards effective oil-water emulsions separation[J]. Sep Purif Technol, 2019, 209:434-442.
[9] Zhao X, Lan Y, Yang K, et al. Antifouling modification of PVDF membranes via in situ mixed-charge copolymerization and TiO2 mineralization[J]. Appl Surf Sci, 2020, 525:146564.
[10] Zhang M, Peltier R, Zhang M, et al. In situ reduction of silver nanoparticles on hybrid polydopamine–copper phosphate nanoflowers with enhanced antimicrobial activity[J]. J Mater Chem B, 2017, 5(27):5311-5317.
[11] Li M, Chen Y, Mao L B, et al. Seeded mineralization leads to hierarchical CaCO3 thin coatings on fibers for oil/water separation applications[J]. Langmuir, 2018, 34(9):2942-2951.
[12] Tang F, Wang D, Zhou C, et al. Natural polyphenol chemistry inspired organic-inorganic composite coating decorated PVDF membrane for oil-in-water emulsions separation[J]. Mater Res Bull, 2020, 132:110995. 
[13] Xie H, Chen B, Lin H, et al. Efficient oil-water emulsion treatment via novel composite membranes fabricated by CaCO3-based biomineralization and TA-Ti (IV) coating strategy[J]. Sci Total Environ, 2023, 857:159183.
[14] Chen P C, Wan L S, Xu Z K. Bio-inspired CaCO3 coating for superhydrophilic hybrid membranes with high water permeability[J]. J Mater Chem, 2012, 22(42):22727-22733.
[15] Wang J, Wang H. Multilayered chitosan/kaolin@calcium carbonate composite films with excellent chemical and thermal stabilities for oil/water filtration realized by a facile layer-by-layer assembly[J]. Sep Purif Technol, 2022, 289:120738.
[16] Wang J, Wang H. Tolerant chitosan/carboxymethyl cellulose@calcium composite films on nylon fabric for high-flux water/oil separation[J]. Carbohydr Polym, 2022, 294:119832.
[17] Li Z, Peng B, Deng Z. Biomimetic synthesis of calcium carbonate films on bioinspired polydopamine matrices[J]. J Coat Technol, 2017, 14:1095-1105.
[18] Tummons E, Han Q, Tanudjaja H J, et al. Membrane fouling by emulsified oil: A review[J]. Sep Purif Technol, 2020, 248:116919.
[19] Putatunda S, Bhattacharya S, Sen D, et al. A review on the application of different treatment processes for emulsified oily wastewater[J]. Int J Environ SCI TE, 2019, 16:2525-2536.
[20] Shi H, He Y, Pan Y, et al. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation[J]. J Membr Sci, 2016, 506:60-70.
[21] Yuan T, Meng J, Hao T, et al. A scalable method toward superhydrophilic and underwater superoleophobic PVDF membranes for effective oil/water emulsion separation[J]. ACS Appl Mater Interfaces, 2015, 7(27):14896-14904.
[22] Zhang C, Ou Y, Lei W-X, et al. CuSO4/H2O2-Induced Rapid Deposition of Polydopamine Coatings with High Uniformity and Enhanced Stability[J]. Angew Chem Int Ed, 2016, 55:3054–3057.
[23] Kim S, Park C B. Dopamine-induced mineralization of calcium carbonate vaterite microspheres[J]. Langmuir, 2010, 26(18):14730-14736.
[24] Tunji Oloyede C, Olatayo Jekayinfa S, Olanrewaju Alade A, et al. Potential Heterogeneous Catalysts from Three Biogenic Residues toward Sustainable Biodiesel Production: Synthesis and Characterization[J]. Chemistry Select, 2022, 7(48):e202203816.
[25] Wang M, Wu S, Guo J, et al. Immobilization of cadmium by hydroxyapatite converted from microbial precipitated calcite[J]. J Hazard Mater, 2019, 366:684-693.
[26] Feng B, Guo W, Peng J, et al. Separation of scheelite and calcite using calcium lignosulphonate as depressant[J]. Sep Purif Technol, 2018, 199:346-350.
[27] Shi Y, Zhai N, Li X, et al. Constructing FeNi alloy/polydopamine-derived carbon composite for efficient microwave absorption[J]. Synth Met, 2022, 291:117202.
[28] Yang J, Yu T, Jiang X, et al. Hydrated manganese hydrogen phosphate coated membrane with excellent anticrude oil-fouling property for separating crude oil from diverse wastewater[J]. Surf Coat Technol, 2023, 454:129215.
[29] Zuo J, Liu Z, Zhou C, et al. A durable superwetting clusters-inlayed mesh with high efficiency and flux for emulsion separation[J]. J Hazard Mater, 2021, 403:123620.
[30] Chu Z, Feng Y, Seeger S. Oil/water separation with selective superantiwetting/superwetting surface materials[J]. Angew Chem Int Ed, 2015, 54(8):2328-2338.
[31] Deng Y, Zhang G, Bai R, et al. Fabrication of super hydrophilic and underwater superoleophobic membranes via an in situ crosslinking blend strategy for highly efficient oil/water emulsion separation[J], J Membr Sci, 2019, 569: 60-70. 
[32] Duong P H H, Chung T S, Wei S, et al. Highly permeable double-skinned forward osmosis membranes for anti-fouling in the emulsified oil–water separation process[J]. Environ Sci Technol, 2014, 48(8):4537-4545.
 Peng Y, Guo F, Wen Q, et al. A novel polyacrylonitrile membrane with a high flux for emulsified oil/water separation[J], Sep Purif Technol, 2017, 184:72-78.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号