渗透汽化-热泵精馏工艺分离DMC-MeOH共沸物 |
作者:王济杰,杨立秋,周浩力 |
单位: 南京工业大学 化工学院,南京 211816 |
关键词: 渗透汽化;碳酸二甲酯-甲醇共沸物;热泵精馏;热集成 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2024,44(4):85-95 |
摘要: |
碳酸二甲酯(DMC)-甲醇(MeOH)共沸物分离存在能耗高、能源利用效率低的问题。渗透汽化(PV)作为液-液分离技术,不受汽-液平衡限制,广泛用于共沸物体系的分离。传统的PV过程需要外部提供热量来维持恒定的原料侧温度;同时,渗透侧需要外部提供冷量来冷凝收集,降低了能源利用效率。本研究设计开发了PV-热泵精馏工艺,用聚二甲基硅氧烷(PDMS)/聚偏氟乙烯(PVDF)复合膜分离DMC-MeOH共沸物体系,用热泵进行热集成,并将模拟结果与文献报道的萃取精馏、变压精馏和传统PV-精馏等过程进行比较。结果表明,在常压、共沸点进料、PV单元stage-cut为0.3时,PV-热泵精馏工艺节能效果较好,与有热集成的变压精馏相比,可降低能耗约47%,能效提高90%。本研究设计的PV-热泵精馏工艺为共沸物的分离提供了一个新的发展方向。 |
The separation of dimethyl carbonate (DMC)-methanol (MeOH) azeotropes has the characteristics of high energy consumption and low energy efficiency. As a liquid-liquid separation technology, pervaporation is not limited by vapor-liquid equilibrium and is widely used in the separation of azeotropic systems. Conventional pervaporation processes require an external energy supply to maintain a constant residual liquid temperature. Besides, the permeation side requires external cooling to condense collection, reducing energy efficiency. In this study, a coupled membrane-heat pump distillation process was designed and developed, in which the DMC-MeOH azeotrope system was separated by polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) composite membrane, the energy integration optimization was performed with a heat pump, and the simulation results were compared with the extracted distillation, pressure swing rectification and conventional membrane-rectification processes reported in the literatures. The results show that the PV-heat pump distillation process has a good energy-saving effect when the atmospheric pressure, azeotrope feed and the stage cut of PV unit is 0.3. Compared with the pressure swing distillation with heat integration, the energy consumption can be reduced by about 47% and the energy efficiency can be increased by 90%. The membrane-heat pump distillation process designed in this study provides a new development direction for the separation of azeotropes. |
基金项目: |
国家重点研发项目(2022YFB3805203, 2021YFC2101201)和国家自然科学基金项目(22278208) |
作者简介: |
王济杰 (1991-),男,江苏省连云港市人,硕士,从事膜分离研究,E-mail:202161204331@ njtech.edu.cn |
参考文献: |
[1] 张雪娇, 程永清. 化工生产中绿色原料-碳酸二甲酯的应用[J]. 化学工业与工程技术, 2005, 26(2):40-43. [2] Tan H, Wang Z, Xu Z, et al. Review on the synthesis of dimethyl carbonate[J]. Catal Today, 2018, 316:2-12. [3] 林子昕, 田伟, 安维中. 热泵辅助变压精馏分离碳酸二甲酯/甲醇工艺及系统模拟优化[J]. 化工进展, 2022, 41(11):5722-5730. [4] 王文奇, 陈义浩, 王景涛, 等. 有机溶剂纳滤在石油化工中的应用进展[J]. 膜科学与技术, 2021, 41(6):243-250. [5] 赵娜, 江虹, 白鹏. 精馏-渗透汽化集成在化工中的应用[J]. 化学工业与工程, 2009, 26(3):278-282. [6] Shah V M, Bartels C R, Pasternak M, et al. Opportunities for membranes in the production of octane enhancers[J]. AIChE Symp Ser, 1989, 85:93-97. [7] Rautenbach R, Vier J. Aufbereitung von methanol/dimethylcarbonat-strömen durch kombination von pervaporation und rektifikation[J]. Chem Ing Tech, 1995, 67(11):1498-1501. [8] 张元红, 展江宏, 杨吉红. 蒸气渗透膜法分离碳酸二甲酯和甲醇共沸物[C]// 二〇〇八年全国石油石化企业节能减排技术交流会. 2008. [9] Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600):435-437. [10] Del Pozo Gomez M T, Klein A, Repke J-U, et al. A new energy-integrated pervaporation distillation approach[J]. Desalination, 2008, 224(3):28-33. [11] Zong C, Guo Q, Shen B, et al. Heat-integrated pervaporation–distillation hybrid system for the separation of methyl acetate–methanol azeotropes[J]. Ind Eng Chem Res, 2021, 60(28):10327-10337. [12] 孙诗瑞, 杨傲, 石涛, 等. 特殊精馏热耦合强化技术研究进展[J]. 化工学报, 2020, 71(10):4575-4589. [13] 陈丽娟. 热泵技术促进近沸点/共沸物系分离节能研究[D]. 常州: 常州大学, 2021. [14] Zhou H, Lv L, Liu G, et al. PDMS/PVDF composite pervaporation membrane for the separation of dimethyl carbonate from a methanol solution[J]. J Membr Sci, 2014, 471:47-55. [15] 李春山, 张香平, 张锁江, 等. 加压-常压精馏分离甲醇–碳酸二甲酯的相平衡和流程模拟[J]. 过程工程学报, 2003, 3(5):453-458. [16] Rodríguez A, Canosa J, A. Domínguez, et al. Vapour-liquid equilibria of dimethyl carbonate with linear alcohols and estimation of interaction parameters for the UNIFAC and ASOG method[J]. Fluid Phase Equilibr, 2002, 201:187-201. [17] Olivieri G V, Torres R B. Thermodynamic and spectroscopic study of binary mixtures containing {dimethyl carbonate (DMC)?+?alcohols} at T?=?(288.15–308.15)?K and p?=?(0.1–40)?MPa: experimental study and modelling[J]. J Chem Thermodyn, 2019, 133:229-260. [18] Rom A, Miltner A, Wukovits W, et al. Energy saving potential of hybrid membrane and distillation process in butanol purification: experiments, modelling and simulation[J]. Chem Eng Process, 2016, 104:201-211. [19] Huttunen M, Nygren L, Kinnarinen T, et al. Specific energy consumption of cake dewatering with vacuum filters[J]. Miner Eng, 2017, 100:144-154. [20] Li Y, Zong C, Zhou H, et al. Pervaporative separation of methyl acetate-methanol azeotropic mixture using high‐performance polydimethylsiloxane/ceramic composite membrane[J]. Asia-Pac J Chem Eng, 2019, 14(5):2343. [21] Figueroa Paredes D A, Laoretani D S, Zelin J, et al. Screening of pervaporation membranes for the separation of methanol-methyl acetate mixtures: an approach based on the conceptual design of the pervaporation-distillation hybrid process[J]. Sep Purif Technol, 2017, 189:296-309. [22] Farshad F, Iravaninia M, Kasiri N, et al. Separation of toluene/n-heptane mixtures experimental, modeling and optimization[J]. Chem Eng J, 2011, 173(1):11-18. [23] Bausa J, Marquardt W. Shortcut design methods for hybrid membrane/distillation processes for the separation of nonideal multicomponent mixtures[J]. Ind Eng Chem Res, 2000, 39(6):1658-1672. [24] Valentinyi N, Andre A, Haaz E, et al. Experimental investigation and modeling of the separation of ternary mixtures by hydrophilic pervaporation[J]. Sep Sci Technol, 2019, 55(3):601-617. [25] Bannwarth H. Machines for Vacuum Generation[M]// Germany: Betzdruck GmbH. 2005:111-155. [26] Castel C, Favre E. Membrane separations and energy efficiency[J]. J Membr Sci, 2018, 548:345-357. [27] 沈媛媛. 酯交换法合成碳酸二甲酯工艺的反应精馏与分离过程综合[D]. 青岛: 青岛科技大学, 2023. [28] 何康. 碳酸二甲酯-甲醇共沸体系分离的模拟与控制研究[D]. 青岛: 中国石油大学(华东), 2015. [29] Liang S, Cao Y, Liu X, et al. Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control[J]. Chem Eng Res Des, 2017, 117:318-335. [30] Wang L, Han X, Li J, et al. Hydrophobic nano-silica/polydimethylsiloxane membrane for dimethylcarbonate–methanol separation via pervaporation[J]. Chem Eng J, 2011, 171(3):1035-1044. [31] Ma J, Wang X, Zhou Y, et al. Energy-saving process development for the purification of propylene glycol based on MVR heat pump distillation combined with thermally coupled technology[J]. Sep Purif Technol, 2024, 329:125064. [32] Li X, Geng X, Cui P, et al. Thermodynamic efficiency enhancement of pressure-swing distillation process via heat integration and heat pump technology[J]. Appl Therm Eng, 2019, 154:519-529. [33] Park J, Kim S-J, Lee I, et al. Techno-economics and sensitivity analysis of hybrid process combining carbon molecular sieve membrane and distillation column for propylene/propane separation[J]. Chem Eng Res Des, 2021, 172:204-214. [34] 彭家瑶. 特殊精馏分离碳酸二甲酯-甲醇共沸物的工艺优化与控制策略[D]. 青岛: 青岛科技大学, 2017. [35] Toth A J. Comprehensive evaluation and comparison of advanced separation methods on the separation of ethyl acetate-ethanol-water highly non-ideal mixture[J]. Sep Purif Technol, 2019, 224:490-508. [36] Wang C, Zhang Z, Zhang X, et al. Energy-saving hybrid processes combining pressure-swing reactive distillation and pervaporation membrane for n-propyl acetate production[J]. Sep Purif Technol, 2019, 221:1-11. [37] Liu S, Li H, Kruber B, et al. Process intensification by integration of distillation and vapor permeation or pervaporation - an academic and industrial perspective[J]. Results Eng, 2022, 15:100527. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号