井下煤矿采出水回用陶瓷膜集成工艺研究
作者:童裕佳,刘桂娟,李佳尧,季红军,呼志平,白利军,麻瑞军,李卫星
单位: 1.南京工业大学 化工学院,南京 211816;2.南京工大膜应用技术研究所有限公司,南京 211800;3.陕西煤业化工集团孙家岔龙华矿业有限公司,榆林 719314
关键词: 矿井水;水处理;中水回用
DOI号:
分类号: TQ028; X703.1
出版年,卷(期):页码: 2024,44(4):96-104

摘要:
 水资源是矿区经营发展不可或缺的重要组成部分,高效处理矿井水可以在一定程度上缓解矿区缺水等问题。本项目首次提出了井下百米陶瓷膜处理煤矿矿井水工艺,其装置设计结构紧凑,占地面积为传统工艺的1/10。对比了“混凝沉淀+砂滤+有机超滤+反渗透”工艺及“陶瓷膜+反渗透”工艺。结果显示:“陶瓷膜+反渗透”集成工艺处理矿井水的出水化学需氧量(CODCr)质量浓度为7.2 mg/L,NH3-N质量浓度为0.12 mg/L,对固体悬浮物(SS)和浊度具有100%的去除效果,陶瓷膜集成工艺在矿井水处理领域展现出了广阔的应用前景。
 Water resource is an indispensable part of mine management and development. Efficient treatment of mine water can alleviate the problems of mine water shortage to a certain extent. This project proposes the process of underground ceramic membrane treatment of coal mine water for the first time, and its device design is compact and occupies 1/10 of the traditional process. The process of "coagulation sedimentation + sand filtration + ultrafiltration + reverse osmosis" and the process of "ceramic membrane filtration + reverse osmosis" were compared. The results show that the chemical oxygen demand (CODCr) concentration and NH3-N concentration are 7.2mg /L and 0.12mg /L respectively in the treatment of mine water by the integrated process of "ceramic membrane + reverse osmosis", which has a 100% removal effect on suspended solids (SS) and turbidity. Ceramic membrane direct filtration technology has shown a broad application prospect in the field of mine water treatment.

基金项目:

作者简介:
童裕佳(1994-)江苏苏州人,博士研究生,从事水处理膜材料开发及工艺应用

参考文献:
 [1] Wang T, Yang J, Jin D, et al. The hydrogeochemical characteristics and formation mechanism of high-fluoride mine water[J]. J Clean Prod, 2023, 430: 139671. 
[2] 尹尚先, 徐斌, 尹慧超, 等. 矿井水防治学科基本架构及内涵[J]. 煤炭科学技术, 2023, 51(7): 24−35.
[3] 刘德民, 顾爱民, 闫凯迪. 基于水力学与水化学耦合的矿井涌(突)水水源识别方法研究 [J]. 煤炭工程, 2023, 55(1): 87−93.
[4] Rey V, Ríos C A, Vargas L Y, et al. Use of natural zeolite-rich tuff and siliceous sand for mine water treatment from abandoned gold mine tailings[J]. J Geochem Explor, 2021, 220: 106660.
[5] Dubuc J, Coudert L, Lefebvre O, et al. Electro-Fenton treatment of contaminated mine water to decrease thiosalts toxicity to daphnia magna[J]. Sci Total Environ, 2022, 835: 155323. 
[6] Tayná D F, Nancucheo I, et al. Comparison of two acidophilic sulfidogenic consortia for the treatment of acidic mine water[J]. Front Bioeng Biotechnol, 2022, 10: 1048412.
[7] Ren J, Zheng L, Su Y, et al. Competitive adsorption of Cd(II), Pb(II) and Cu(II) ions from acid mine drainage with zero-valent iron/phosphoric titanium dioxide: XPS qualitative analyses and DFT quantitative calculations[J]. Chem Eng J, 2022, 445: 136778. 
[8] 魏姗姗. 煤矿矿井水处理站改造方案分析及实践[J]. 山西化工, 2023, 43(8):236−237+250.
[9] Olvera-Vargas H, Dubuc J, Wang Z, et al. Electro-Fenton beyond the degradation of organics: treatment of thiosalts in contaminated mine water[J]. Environ Sci Technol, 2021, 55: 2564-2574.
[10] 李福勤, 豆硕超, 高珊珊, 等. 多重混凝沉淀处理高悬浮物矿井水试验及应用[J]. 煤炭工程, 2023, 55(4): 102−106.
[11] 刘浩. 无机陶瓷膜在煤矿矿井水处理站提标改造工程中的应用[J]. 净水技术, 2019, 38(S2): 55−59.
[12] 党平, 赛世杰, 张娜, 等. 偏铝酸钠去除高盐废水中二氧化硅的试验研究[J]. 工业水处理, 2019, 39(7): 74−76.
[13] 朱泽民, 刘晨. 超滤-反渗透双膜法在甘肃某矿井水处理中的应用[J]. 给水排水, 2019, 55(6):77−81.
[14] 梁戈龙, 刘玲, 焦建军, 等. 基于“源-径-受体”的高盐水灌注对地下水环境影响预测评价 [J]. 煤炭工程, 2023, 55(S1): 155-161.
[15] 郝如杰, 郑纪永, 朱成林, 等. 地下酸性矿井水治理工程设计及应用[J]. 煤炭工程, 2023, 55(4): 98−101.
[16] 雷兆武, 孙京敏, 金泥沙, 等. 高矿化度矿井水井下利用处理实验与工艺研究[J]. 煤炭工程, 2023, 55(8): 78-83. 
[17] Hoagland, BethMosley, LukeRusso, TessKirby, et al. Arsenic sequestration in gold mine wastes under changing pH and experimental rewetting cycles[J]. Appl Geochemistry, 2021, 124: 104789.
[18] Li Z, Wang H, Xi X, et al. Estimation of activation energy of desorption of n-hexanol from activated carbons by the TPD technique[J]. Adsorp Sci Technol, 2003, 21: 125−203.
[19] 黄晓帆, 王雷, 朱跃钊. 陶瓷膜水处理技术应用与膜污染缓解研究进展[J]. 现代化工, 2023, 43(7): 55-58.
[20] 张溪彧, 董书宁, 王锐, 等. 含悬浮物矿井水微絮凝——多级过滤工艺研究[J]. 水文地质工程地质, 2023, 50(5): 222−230.
[21] Su B, Liu S, Deng L, et al. Monitoring direct current resistivity during coal mining process for underground water detection: An experimental case study[J]. Ieee T Geosci Remote., 2022, 60: 5915308.
[22] Xu W, Yang H, Mao Q, et al. Removal of heavy metals from acid mine drainage by red mud–based geopolymer pervious concrete: Batch and long–term column studies[J]. Polymers, 2022, 14(24): 5355.
[23] He X, Lei L. Optimizing methane recovery: Techno-economic feasibility analysis of N2-selective membranes for the enrichment of ventilation air methane[J]. Sep Purif Technol, 2021, 259: 118180.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号