双极膜电渗析清洁制备L-苹果酸过程工艺优化
作者:陈青柏,王昊雪,王建友,徐勇,韩婷
单位: 1天津工业大学 环境科学与工程学院,省部共建分离膜与膜过程国家重点实验室,天津300387; 2南开大学 环境科学与工程学院,天津市跨介质复合污染环境治理技术重点实验室,天津300350
关键词: L-苹果酸;双极膜电渗析;清洁生产
DOI号:
分类号: TQ 028.8
出版年,卷(期):页码: 2024,44(4):115-122

摘要:
 生产L-苹果酸的传统工艺多用钙盐法,需向发酵液投加大量无机酸,酸化过程产生大量废盐,导致额外的环境处置成本。本文提出两隔室型双极膜电渗析(BMED)法制备L-苹果酸的新型工艺,以转化率、电流效率及能耗等为评价指标,研究了电流密度、初始盐浓度、膜面流速等工艺参数对产酸性能的影响规律,优化了操作条件并进行了经济性分析。结果表明,对于模拟L-苹果酸二钠发酵液,控制电流密度为40 mA/cm2、初始L-苹果酸浓度为0.2 mol/L、膜面流速为1.44 cm/s时,L-苹果酸的转化率可达94.99%,能耗为6.77 kWh/kg L-苹果酸,经济性分析显示其生产费用为11.34 ¥/kg L-苹果酸。研究可为L-苹果酸清洁制备工艺的开发、推进BMED在有机酸生产的应用提供有益参考。
 The traditional process production of L-malic acid often uses calcium salt method, which requires adding a large amount of inorganic acid to the fermentation broth. The acidification process produces a large amount of waste salt, resulting in additional environmental disposal costs. This article proposes a new process for the preparation of L-malic acid using a two-compartment bipolar membrane electrodialysis (BMED). The conversion rate, current efficiency, and energy consumption are used as evaluation indicators. The influence of process parameters such as current density, initial salt concentration, and membrane surface flow rate on acid production performance was studied, and the operating conditions were optimized and economic analysis was conducted. The results showed that for simulating the fermentation broth of L-malic acid disodium, with a current density of 40 mA/cm2, an initial L-malic acid concentration of 0.2 mol/L, and a membrane flow rate of 1.44 cm/s, the conversion rate of L-malic acid could reach 94.99%, and the energy consumption was 6.77 kWh/kg L-malic acid. Economic analysis showed that the production cost was 11.34 ¥/kg L-malic acid. Research can provide useful references for the development of clean preparation processes for L-malic acid and the promotion of the application of BMED in organic acid production.

基金项目:
国家自然科学基金项目(52200102,52373100);天津市自然科学基金项目(21JCZDJC00270);国家重点研发计划项目(2017YFC0404003);南开大学中央高校基本科研业务费专项资金资助(63221312)

作者简介:
陈青柏(1988-),男,河北秦皇岛人,助理研究员,研究方向为分离膜与膜过程。Email:qingbaichen@tiangong.edu.cn

参考文献:
 [1]L-苹果酸的生理特性及应用进展[J]. 饮料工业,  2020,  23(4):  74-77.
[2]He J, Zhou R, Dong Z, et al. Bipolar membrane electrodialysis for cleaner production of diprotic malic acid: Separation mechanism and performance evaluation[J]. Membranes, 2023, 13: 197.
[3]刘建军, 姜鲁燕, 赵祥颖,等. L-苹果酸的应用及研究进展[J]. 中国食品添加剂, 2003(3): 53-56+52.
[4]Wu N, Zhang J, Chen Y, et al. Recent advances in microbial production of L-malic acid[J]. Applied Microbiology and Biotechnology, 2022, 106: 7973–7992.
[5]张渊. L-苹果酸的应用及研究[J]. 食品安全导刊, 2019(12): 127.
[6]Chen Q, Wang J, Liu Y, et al. Sustainable disposal of seawater brine by novel hybrid electrodialysis system: Fine utilization of mixed salts[J]. Water Research, 2021, 201: 117335.
[7]Chen X, Chen G, Wang Q, et al. Transforming salty whey into cleaning chemicals using electrodialysis with bipolar membranes[J]. Desalination, 2020, 492: 114598.
[8]董隽, 薛上峰, 刘春红,等. 复循环双极膜电渗析处理煤化工含盐废水制备酸碱的研究[J]. 膜科学与技术, 2023, 43(2): 112-122.
[9]张委, 张莉, 谢永刚,等. 双极膜电渗析法制备巯基乙酸的应用研究[J]. 膜科学与技术, 2021, 41(5): 114-120+138.
[10]赵一欣, 吴梦凡, 王建行,等. 二氧化碳在双极膜电渗析系统中溶解吸收过程的研究[J]. 无机盐工业, 2022, 54(4): 104-111.
[11]Panduri? N, Šali? A, Zeli? B. Fully integrated biotransformation of fumaric acid by permeabilized baker's yeast cells with in situ separation of L-malic acid using ultrafiltration, acidification and electrodialysis[J]. Biochemical Engineering Journal, 2017, 125: 221-229.
[12]边艳芳, 王建友, 董恒,等. 双极膜电去离子过程制备四甲基氢氧化铵[J]. 水处理技术, 2011, 37(2): 35-38+41.
[13]Cao Y, Li X, Zhang L, et al. Construction of bipolar membrane electrodialysis reactor for removal and recovery of nitrogen and phosphorus from wastewater[J]. International Journal of Electrochemical Science, 2023, 18:100051.
[14]高艳荣, 王建友, 刘红斌. 双极膜电渗析解离NaCl清洁制备酸碱的实验研究[J]. 膜科学与技术, 2014, 34(3): 96-103.
[15]Szczygie?da M, Prochaska K. Alpha-ketoglutaric acid production using electrodialysis with bipolar membrane[J]. Journal of Membrane Science, 2017, 536:37-43.
[16]董恒, 边艳芳, 王建友. 双极膜电渗析从发酵废液回收柠檬酸[C]// 第四届中国膜科学与技术报告会论文集. 中国膜工业协会, 2010: 6.
[17]Walker W S, Kim Y, Lawler D F, et al. Treatment of model inland brackish groundwater reverse osmosis concentrate with electrodialysis-Part I: sensitivity to superficial velocity[J]. Desalination, 2014, 344:152-162.
[18]Luo W, Wang D, Zhu D, et al. Separation of fluoride and chloride ions from ammonia-based flue gas desulfurization slurry using a two-stage electrodialysis[J]. Chemical Engineering Research and Design, 2019, 147: 73-82
[19]Zheng Y, Jin Y, Zhang N, et al. Recovery of N, N-Dimethylglycine (DMG) from Dimethylglycine Hydrochloride by Bipolar Membrane Electrodialysis[J]. Chemical Engineering and Processing - Process Intensification, 2022, 176:108943.
[20]Wang Y, Zhang Z, Jiang C, et al. Electrodialysis Process for the Recycling and Concentrating of Tetramethylammonium Hydroxide (TMAH) from Photoresist Developer Wastewater[J]. Industrial & Engineering Chemistry Research, 2013, 52:18356-1836.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号