抗污染PVDF-CTFE膜耦合亲水改性研究
作者:王晨宇,吕晓龙,谷 杰,任 凯,刘子强,刘 超
单位: 1省部共建分离膜与膜过程国家重点实验室,天津工业大学 材料科学与工程学院,生物化工研究所,300387;2膜材料与膜应用国家重点实验室,天津膜天膜科技股份有限公司,天津300457
关键词: PVDF-CTFE;葡甲胺;牛磺酸;本体改性;表面改性
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2024,44(4):123-129

摘要:
 通过本体改性或表面改性提高膜的亲水性可以减轻膜污染。然而,本体改性中加入的亲水物质过多会导致膜发生溶胀,造成膜的拉伸强力降低;接枝大分子的表面改性可能会引起膜表面堵孔,造成膜通量降低。本文将适量本体改性和小分子表面改性2种方法耦合对膜进行亲水化改性,有望打破单一改性方法中存在的局限性来更好的提高膜的抗污染性能。首先使用葡甲胺对聚偏氟乙烯-三氟氯乙烯(PVDF-CTFE)膜进行本体改性,之后使用小分子牛磺酸对本体改性后的PVDF-CTFE膜进行表面改性。结果表明,相较于单一本体改性膜,本体-表面耦合改性法所制备的膜的水接触角由91.5°降至41.8°,膜表面亲水性得到了很大的提升,且BSA过滤通量得到了明显提高。相较于单一表面改性膜,通过本体-表面耦合改性法所制备膜的纯水通量由3394 L/(m2·h·MPa)提升至4743 L/(m2·h·MPa)。本体-表面耦合改性法使2种改性方法产生协同效应,有效提升纯水通量和亲水性以及抗污染性能。
  Membrane fouling can be mitigated by improving the hydrophilicity of the membrane through bulk modification or surface modification. However, too many hydrophilic substances added to the bulk modification will cause the membrane to swell, resulting in a decrease in the tensile strength of the membrane. Surface modification of grafted macromolecules may cause pore plugging on the membrane surface and reduce membrane flux. In this paper, the hydrophilic modification of the membrane is carried out by coupling the two methods of bulk modification and small molecule surface modification, which is expected to break the limitations of a single modification method and better improve the anti-fouling performance of the membrane. In this paper, meglumine was first used to modify the bulk of the polyvinylidene fluoride-trifluoroethylene (PVDF-CTFE) membrane, and then the surface of the modified PVDF-CTFE membrane was modified by small molecule taurine. The results show that compared with the single bulk modified membrane, the water contact angle of the membrane prepared by the bulk-surface coupling modification method is reduced from 91.5° to 41.8°, the hydrophilicity of the membrane surface is greatly improved, and the filtration flux of BSA is significantly improved. Compared with the single surface modified membrane, the pure water flux of the membrane prepared by the bulk-surface coupling modification method increased from 3394 L/(m2·h·MPa) to 4743 L/(m2·h·MPa). The bulk-surface coupling modification method enables the two modification methods to produce a synergistic effect, which can effectively improve the pure water flux, hydrophilicity and anti-fouling performance.

基金项目:
国家重点研发计划项目(2023YFB3810504)

作者简介:
王晨宇(1999-),男,河南新乡市人,硕士生,研究方向为膜制备,E-mail:601681158@qq.com

参考文献:
 [1] Guan Y, Qing I, Chen W, et al. Interaction between humic acid and protein in membrane fouling process: A spectroscopic insight[J]. Water Res, 2018, 145: 146-152.
[2] Geng C, Fan L, Niu H, et al. Improved anti-organic fouling and antibacterial properties of PVDF ultrafiltration membrane by one-step grafting imidazole-functionalized graphene oxide[J]. Mater Sci Eng, C, 2021, 131: 112517.
[3] Kang G, Cao Y. Application and modification of poly(vinylidene fluoride) (PVDF) membranes - A review[J]. J Membr Sci, 2014, 463: 145-165.
[4] Zhang Q, Zhang S, Zhang Y, et al. Preparation of PVDF/PVC composite membrane for wastewater purification[J]. Desalination Water Treat, 2013, 51(19/20/21): 3854-3857.
[5] Sousa R, Kundu M, Goren A, et al. Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) lithium-ion battery separator membranes prepared by phase inversion[J]. Rsc Adv, 2015, 5(110): 90428-90436.
[6] 孙煜珂, 吕晓龙, 孔晓,等. 聚偏氟乙烯-三氟氯乙烯膜亲水化改性方法探究[J]. 膜科学与技术, 2020, 40(5): 47-53.
[7] Koh J, Kim Y, Park J, et al. Nanofiltration membranes based on poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-poly(styrene sulfonic acid)[J]. Polym Adv Technol, 2008, 19(11): 1643-1648.
[8] Liu F, Abed M, Li K. Hydrophilic modification of P(VDF-co-CTFE) porous membranes[J]. Chem Eng J, 2011, 66(1): 27-35.
[9] Kharraz J, An A. Patterned superhydrophobic polyvinylidene fluoride (PVDF) membranes for membrane distillation: Enhanced flux with improved fouling and wetting resistance[J]. J Membr Sci, 2020, 595: 117596.
[10] Zheng S, Lu X, Wu C, et al. Study on the reconstruction of crystalline polymer porous membrane pore channels via confined-region swelling effect[J]. Sep Purif Technol, 2022, 293: 121090.
[11] Kong X, Sun Y, Lu X, et al. Facile preparation of persistently hydrophilic poly(vinylidene fluoride-co-trifluorochloroethylene) membrane based on in -situ substitution reaction[J]. J Membr Sci, 2020, 609: 118223.
[12] Zhu K, Zhang S, Luan J, et al. Fabrication of ultrafiltration membranes with enhanced antifouling capability and stable mechanical properties via the strategies of blending and crosslinking[J]. J Membr Sci, 2017, 509: 116-127.
[13] Di Vincenzo M, Barboiu M, Tiraferri A, et al. Polyol-functionalized thin-film composite membranes with improved transport properties and boron removal in reverse osmosis[J]. J Membr Sci, 2017, 540: 71-77.
[14] Hu Q, Zhou F, Lu H, et al. Improved antifouling performance of a polyamide composite reverse osmosis membrane by surface grafting of dialdehyde carboxymethyl cellulose (DACMC)[J]. J Membr Sci, 2020, 620: 118843.
[15] Wang F, Zhu H, Zhang H, et al. Effect of surface hydrophilic modification on the wettability, surface charge property and separation performance of PTFE membrane[J]. J Water Process, 2015, 8: 11-18.
[16] Sun C, Feng X. Enhancing the performance of PVDF membranes by hydrophilic surface modification via amine treatment[J]. Sep Purif Technol, 2017, 185: 94-102
[17] Davenport D, Lee J, Elimelech M. Efficacy of antifouling modification of ultrafiltration membranes by grafting zwitterionic polymer brushes[J]. Sep Purif Technol, 2017, 189: 389-398.
[18] Ma R, Lu X, Kong X, et al. A method of controllable positive-charged modification of PVDF-CTFE membrane surface based on C-Cl active site[J]. J Membr Sci, 2021, 620: 118936
[19] Ming Y, Zhang Y, Sun S, et al. Properties of polyvinyl chloride (PVC) ultrafiltration membrane improved by lignin: Hydrophilicity and antifouling[J]. J Membr Sci, 2019, 575: 50-59.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号